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Classical and quantum elementary systems are investigated from the point of view of invariance under a
connected Lie group. The classification and characterization of elementary systems are considered in a

unified way. The representation theory of symmetric and enveloping algebras is used as a tool in order to
characterize the observables physically and also to analyze the analogies between classical and quantum
mechanics. The results obtained are applied to the Galilei, Poincaré, and Weyl Lie groups.

1. INTRODUCTION

In a previous article! we have explored the algebraic
structures associated with Lie algebras and their im-
portance in the analysis of the classical and quantum
observables which emerge from a given Lie algebra,

It was a first step in order to test the physical relevance
of the formulation of invariance principles under general
connected Lie groups, This paper is concerned with the
group theoretical concept of elementary systems., Since
the work of Wigner? it has been a key notion in the
mathematical development of classical and quantum
mechanics. Then, the way Wigner defined quantum
elementary systems by means of the projective unitary
irreducible representations of the Poincaré group

has become familiar for a wide class of physicists. At
present Wigner’s ideas have been extended successfully
to other invariance groups® and also to classical mechan-
ics, % but the diversity of the mathematical tools in-
volved makes difficult the understanding of the relations
between the results obtained in the different contexts,
For this reason it is important from both the mathema-
tical and physical points of view to discuss the invari-
ance under Lie groups in such a way that the classical
and quantum elementary systems may be considered
simultaneously, In the present paper we propose a
general formalism for the classification and character-
ization of the elementary systems which allows us to
analyze the mathematical and physical analogies be-
tween both concepts in a unified manner.

Section 2 begins with a brief survey of the basic con-
cepts which arise in the formulation of invariance
principles. This is necessary as the literature about
this subject is not very explicit when it concerns the
relation between the kinematical and the dynamical
actions of invariance groups, Then, the mathematical
definitions of elementary systems are introduced in
terms of the kinematical realizations of the invariance
group G ,. Quantum elementary systems (QES) are
identified with the projective unitary irreducible repre-
sentations of (y; and classical elementary systems
(CES) are defined to be the transitive canonical realiza-
tions of § ;. This characterization of CES follows from
the Souriau work, * and it is the most convenient from
the mathematical point of view. There is a different
approach to the concept of CES which has been developed
by Sudarshan and Mukunda® and Pauri and Prosperi, ®
These authors characterize CES in terms of the re-
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presentations of Lie algebras by functions in phase
space, Their characterization is, in general, only
local, but it has a more immediate interpretation in
physical terms, A similar situation occurs in quantum
mechanics, The physical characterization of QES re-
quires the analysis of the representation of go in terms
of the observables associated with its Lie algebra,
Then, we have two different methods of investigating
elementary systems, the first is based on the global
actions of Lie groups and the second is based on the
representations of Lie algebras, The global method

is appropriated for classifying the elementary systems
and the local one is convenient for characterizing them
from a physical point of view, The analysis of the
relation between these two approaches is the main ob-
ject of this work, In particular we are interested in two
aspects,

(1) How Lie group action, in classical and quantum
mechanics, defines realizations of algebraic structures
as the symmetric and the enveloping algebras,

(2) In what way the analysis of the algebraic struc-
tures may be used to obtain information about the prop-
erties of CES and QES,

The first question may be conveniently simplified
by using the projective group’ ¢ of ¢ ;. In Part C of
Sec., 2 we prove that the CES of ¢, are desgribed by the
transitive strict canonical realizations of ¢, (Theorem
1), It allows us to work with representations of Lie
algebras, since the infinitesimal exponents of go asso-
ciated with their CES and included in the Lie group
structure of gAOO Thus, this result extends to classical
mechanics the Bargmann® analysis of projective unitary
representations, Moreover, it is formulated in terms
of a unique central extension of ¢/, given by the pro-
jective group §0= This considerably simplifies the
formalism of Souriau? and constitutes the version in
classical mechanics of the result of Carinena and
Santander’ about projective irreducible unitary repre-
sentations, Therefore, we have that both CES and QES
of (, define representations of the Lie algebra of g;o.
This provides the bridge between global and local
methods in order to analyze elementary systems, On
the other hand, it allows us to apply the analysis of the
observables associated with Lie algebras! to the char-
acterization of the elementary systems. We use the
representation theory of enveloping algebras to study,
by means of the adjoint action, the transformation
properties of quantum observables and to classify QES
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in terms of the quantum numbers provided by the
Casimir invariants, Nevertheless, a similar tool has
not been considered rigorously in classical mechanics.
In this paper we show how the representation theory of
symmetric algebras may be used in this context, Thus,
we prove (Theorem 3) that the transformation properties
of classical observables may be analyzed by means of
adjoint action, Moreover, we obtain that the invariants
of the symmetric algebra play the same role in classi-
cal mechanics as the Casimir invariants in quantum
mechanics. In particular, this justifies the formal use
of the adjoint action implicit in the formalism of
Sudarshan and Mukunda (see, for example, Ref. 5,

p. 226).

Question (2) is investigated in Sec. 3 which is de-
voted to the coadjoint action of Lie groups. This action
is fundamental to constructing the CES of a Lie
group, #*1° We investigate how the characteristic
dimensions! of a Lie algebra are related to the proper-
ties of the orbits under the coadjoint action, Two results
are obtained (Proposition 4 and 5) which in physical
terms mean that the characteristic dimensions of G;
represent the number of degrees of freedom and the
number of labeling parameters of the generic CES of

4. These conclusions seem to hold also for QES. It is
part of the empirical analogies between the orbits under
the coadjoint action and the unitary irreducible repre-
sentations of Lie groups. These analogies are the
origin of the “orbit method” of Kirillov!! and the geo-

metric quantization program of Kostant!? and Souriau, ¢

Section 4 is devoted to the applications of the formal~
ism to the Galilei, Poincare and Weyl invariances, We
emphasize, in particular, the analysis of the existence
and the properties of such observables as the position
and the spin for different elementary systems, This
analysis is carried out by using the representation
theory of the algebraic structures and the adjoint
action, In this manner, we obtain the well-known re-
sults about localizability in quantum mechanics. More-
over, we show that the conclusions for classical
mechanics turn out to be completely similar to the ones
obtained at the quantum level., Especially interesting is
the analysis of Weyl invariance, since the Weyl group
provides a manifiestly covariant description of ele-
mentary systems which admits an observable describing
the “age” of the system,

2. INVARIANCE GRQUPS
A, Dynamical systems

In both classical and quantum mechanics, the notion
of “state” appears as the initial condition which deter-
mines the solutions of the evolution equation of the
system, These two concepts, state and evolution law,
are the fundamental ones in the mathematical descrip-
tion of the physical systems, The next definition will be
useful in discussing the common aspects arising in the
dynamical formalism of classical and quantum
mechanics.

Definition 1: By a dynamical system we shall mean
the pair (S, e(.,.)) formed by a nonempty set S and a
two parameter family of bijective maps e(t;, £,) ({4, {,eIR)
of S onto S with the following properties:
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(i) e(¢,?) is the identity map on S for all tcIR,
(i) e(ty, ta) =e(ty, ts) elts, ty) for all 4, £, t,c R,

The set S and the family {e (¢, t,): ¢, HLER} will be
called state space and evolution law respectively, By
one evolution of the dynamical system we shall mean
a curve 7= (f,x(#)) in R xS verifying x(f) =e(t, {') x (')
for all ¢, t'cIR, It is clear that every point (f;,x))cIR xS
belongs to one and only one evolution 7 given by
7= (¢, e(tt))x,). We shall denote by F(S) the set of
evolutions of (S,e(.,.)). I the evolution law ef{t,, f,)
depends only upon the difference #y— 1y, i.e,, e(ty, fy)
=e(ly- ;) then e(f) ({cR) becomes a one-parameter
group of bijective maps of S onto S, In this case we
shall say that the dynamical system is conservative.

The cornerstone of the formulation of the invariance
principles is the notion of group action; let us briefly
define what we mean by this term,

Definition 2: Let X be a nonempty set and let g be a
group, By an action (R, g, S) of g over X we shall mean
a map

GxX—X (g0p)—~R(2P,
which verifies
(i) R(g) is a bijective map of X onto X for all geg,
(ii) R(e) is the identify map on X,
(iil) R(g8y)=R(g)R(g,) for all gi,gzeg

Definition 3: Let (S,e(.,.)) be a dynamical system
and let G be a group. By a kinematical action of § on
this dynamical system we shall mean an action (R, (, 5)
of G on the state space S. On the other hand, by a
dynamical action of g we shall mean an action (R, g ,
E(S)) of g on the set of evolutions E(S),

Both classes of actions of groups on dynamical sys-
tems are related as shows the next proposition which
follows at once from the above definitions,

Proposition 1: Every kinematical action (R*, (, S)

defines a dynamical action (R, G, E(S)) by means of the
map

7= (t,x{) - RO (g7 =(,elt,0) R*(g)e(0,)x()),
1< E(S), gega

Moreover this map determines a bijective correspon-
dence between the sets of kinematical and dinamical
actions of G.

If G, is the group associated with an invariance prin-
ciple, the invariance of the physical laws under changes
of reference frame related by (, requires the existence
of a dynamical action of (, over the dynamical systems
which describe the physical phenomena. In this context,
it is generally assumed that the jnvariance under the
group 7={g(b):bcR} of time translations is accom-
plished by means of the map:

TXE(S)~E(S), n={x)~TO®n={,x(-0), @)
belR.
This postulate is not trivial, in fact it is easy to prove,

Proposition 2: The map (1) defines a dynamical action
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of 7 over (S,e(.,.)) if and only if (S,e(,,.)) is conser-
vative, Moreover, in this case the evolution law verifies
e () = T*(- t)(tcR), where T® is the kinematical action
of 7 associated with the dynamical action 7,

We are interested in groups ¢, which contain 7 as a
subgroup, From Propositions 1 and 2 we see that the
analysis of the consequences derived from the invari-
ance under these groups G, may be carried out in terms
of the kinematical actions of §. Thus the dynamical
systems compatible with the invariance group § , are in
correspondence with the kinematical actions (R®, Gy, S),
the evolution law being determined by the action of the
subgroup 7 of time translations,

B. Elementary systems

Henceforth, we assume that ¢, is a connected Lie
group which contains as a subgroup the group 7 of time
translations. The Lie algebra of § ( will be denoted by
G, and we shall fix a basis By={A;:i=1, ..., Ny} with
the commutation relations [A;, 4,1=3,c 4,.

In classical mechanics the state space of a dynamical
system is a phase space with coordinates and canonically
conjugate momenta. It is described mathematically by a
symplectic manifold, !* that is a differentiable manifold
M equipped with a Poisson bracket { , }. The kinemati-
cal action of the invariance group G, is given by a
canonical realization!® (»,G,, M) of G, over M, These
actions of § ; have an 1mportant property: They are
locally Hamiltonian, '* Then, in a neighborhood ¥ of
each point x,cM there is a map A €G, ~A <C*(N) where
7 is unique up to additive constants and verifies

[r(exp(- tA) x| @)

{7 ./t = .

for all x<& and feC™(N). One finds that the functions
corresponding to the elements of the basis By of G,
verify the Poisson bracket relations

{/Zi’ﬁ/}:hzctkﬁk + 1Ay A, 3)

where 7(A4;, A;) are real constants which define an
equivalence class of infinitesimal exponents® of G;, If
this class is the trivial one we shall say that the canoni-
cal realization is “strict.” In general, the maps A< G,
- 4 €C~(N) are not extended to the whole V/, When it
holds, the canonical realization is said to be Hamilto-
nian, It is known? that this is the case if M is simply
connected or if G, verifies [G, Gy]=G,.

From the point of view of Lie group action, the
irreducible objects are those realizations (v, ¢, M)
such that for all x,ycM there is g< G, verifying »(g)x
=v. They are called transitive canonical realizations,
This suggests the following mathematical characteriza-
tion of elementary systems in classical mechanics,

Definition 4: By a classical elementary system (CES)
of G4 we shall mean a transitive canonical realization
(ry Go, M) of Go. Two CES (r;, Gy, M;) (1=1,2) of G, are
said to be equivalent if there 1s a canonical diffeomor-
phism 7: M, — M, such that Te#{(g)=7,(g)o 7 for all
8<Gy.

In quantum mechanics the state space of a dynamical
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g (/0

system is the set of unit rays of a complex Hilbert
space /., The kinematical action of the invariance group
G, is given by a projective unitary representation

(Us GosH) of G Over H. Each A€G, defines a self-ad-
joint operator 4 on # unique up to additive constants
and satisfies

A y=i— é/(exp[t/i]

Do  BEA, 4)

The image of the basis B; of G, under this map verifies
the commutation relations

[’Zu;j]zi?cﬁgﬁ'iﬂ(ﬂn Aps (5)

where n(A4,;,A;) are real constants which determine an
equivalence class of infinitesimal exponents of G;,, We
now give the usual definition of elementary systems in
quantum mechanics,

Definition 5; By a quantum elementary system (QES)
of ¢, we shall mean an irreducible projective unitary
representation (¢, Gy, #) of G, Two QES (U, G, H4)
(i=1,2) of ( ; are said to be equivalent if there is a
umtary transformation I/: 4 ~ #, such that V{/,(g)
= Uy(g) Vtor all g€ G,.

From (3) and (5) we see that both CES and QES define
representations up to a factor of the Lie algebra G,. At
this point, it is convenient to introduce the projective
group’ 50 of G,. This group is defined in terms of a
basis {n,:?’zl, .., m} of infinitesimal exponents of
G, as the simply connected Lie group with Lie algebra
éo verifying

[4;,4,] :gcikiAk +;nr(Ai’Aj) M,,
(6)

[Ais wr] = [ M,, ”s] =0,

If we denote by ¢ § the universal covering group of G,
we have' that (, is a central extension of G§ by the
Abelian group IR™, Then, there is a exact sequence

0-R"L (yeGf 0. (7)

The composition ¢ =peq of q:G, — ¢ with the covering
homomorphism p:G§ —~ G, is called the projective
homomorphism of 50 onto .

Now, we shall prove that the CES of { may be
identified with strict canonical realizations of (“on

Theovewm 1: Let ( » Co; M) be a transitive strict canoni-
cal realization of ( 0 such that the kernel of the projec-
tive homOI'IlOI‘phISm q: (/ (0 acts identically on V.
Then, the map

GoXM =M, (g,%)=#@G"(g))x (8)

defines a CES of ¢,, Moreover each CES of ¢, is
equivalent to one of this form,

Proof: Given (7, 0o, M) let us denote 7(g)=7(77(g)),
Since Kerg acts trivially, it is clear that (g) is
a canonical transformation on 1/ for all gc ¢,. More-
over, it follows easily that »(g,4;) =7(g1) »(g,) and that
7(e) is the identity map on M, The unique nontrivial
point, in order to conclude that (v, Gy, W) is a CES of

Gy, is to prove that (g,x)eGyx W —~» ( HxeMisa C”
map. From (7) we have that 6o -G ¥ is a C* homomor-
phism with central kernel in 90 A result due to Hochs-
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child" shows the existence of a C* section Ci§o*"§o
verifying q(c(g*)) =g* tor all g*eG¥. On the other
hand, since P:Gf — G is a local isomorphism, there is
a neighborhood {/of the identity element in Gy such that
p~! is a diffeomorphism of (/ Go onto p"H(U)CGE. Then
(g,x)el/xM—~7(g)yxcM is a C* map since it is the
composition of the following C* maps:

UxM

M

GE XM ng XM s
(g,%) (r7g) [e(p(g)), ]

Now, for each gyc(, the set g;(/ is a neighborhood of

go and (g, x)egXM-—-7r(g)xeM is a C” map since it is the

the composition of the following C* maps:

UxM - 1 M

GoUx M

(¢g,%) ——— (g¢lg,x) 7(gglg

Then, we conclude that (g,x)eGyx M —~7(glxcV is a
C” map and therefore (r, Gy, M) is a CES,

On the other hand, given a CES (r,G,, W) of ¢, it
follows at once that #=v¢§ defines a transitive canoni-
cal realization of ¢ (. In order to prove that (7, G, M)
is a strict realization, let us suppose that 5 is the
infinitesimal exponent of G, defined by the map A=G,
—A eC”(N) in the neighborhood of some point of M,

We may redefine this correspondence in such a form
that there is a linear dependence n=73,m,7,. Then,
from (5) and (8) we deduce that (%, 5y, M) is an strict
realization, This proves the assertion. (Q.E.D.)

Similarly, we have the following result’ about the
reduction of the QES of §; to unitary representations of
Go-

Theovem 2: Let ([, Gy,/) be an irreducible unitary
representation of 50 mapping into {/(1) the kernel of the
projective homomorphism G:(y — Go. Then, the map

gOXH—’g ’ (ﬁy U(q-1 ))Z/J,

defines a QES of ¢ ;. Moreover each QES of G, is
equivalent to one of this form,

9)

From Theorems 1 and 2 we have that both CES and
QES define representations of the Lie algebra G;. Let
us notice that for a CES of G, described by a transitive
striet canonical realization (7, Gos M) of go, the repre-

sentation of Go is only locally defmed in a neighborhood
of each element of M, However, all of these realiza-
tions of go may be constructed in terms of transitive
strict Hamiltonian realizations of §0

C. Classical and quantum observables

One of the most important aspects which should be
analyzed for the characterization of observables is
their behavior under the action of the invariance group.
This is fundamental in order to assign an appropriate
mathematical object with a concrete physical
observable,

Let (7 (0, M) be a CES of (. The observables of this
classwal system are described by real functions f
defined over the phase space M, and the action of Qo on
them is given by:

HEN =f2(), &l (10)

Analogously, given a QES (/, Gy,#) of G, the quantum
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e (p™ ()] x.

v(gy) V(go-lg X

observables are described by the self-adjoint operators
F on # and the action of éo on them is given by
UBB =@ FOE)™, Z< o Ay
The analysis of the actions (10) and (11) are particu-
larly easy for the observables coming from the algebra-
ic structures associated with G;, This will be clear
from the following discussion,

Let ¢ be a connected Lie group with Lie algebra G
and let S be the symmetric algebra of G,! Given a basis
B={4,:a=1, ..., N} of G we may identify S with the
polynomial ring C [”1, ..., ay] in N variables equipped
with a Lie algebra structure defined by

{p1spo}= 2. clya 3ty B0y

& By v aB uaa aa ’ (12)

Dls I’2€S,
where {cgﬂza, g,v=1, ..., N} are the structure con-
stants of G in the basis B,

Let (v, ¢, M) be a strict Hamiltonian realization of
G. Since the associated infinitesimal expongnt n is the
trivial one, we can choose the map A<G — 4<C™ (M)
such that it defines a Lie algebra homomorphism, This
map may be extended to the symmetric algebra defining

/’ p()‘41’°-°’ ﬂN)forauf’ p(ahonn, N)lns We
have:

Theovem 3: The map {)ES“’EECQ(M) verifies,
(i) 1t is a representation of S,

(ii) For each pcS, r(g)(E): [adg(p)T", where adg
(g€G) denotes the adjoint action of G over S,

Proof: (i) By its definition it is obvious that p — p is
a linear map which verifies ([)1/)2) =pp,. Moreover

from (12) we deduce {py, o} ={P;,Ps}. Then the conclu-
sion follows,

(ii) 1t is sufficient to prove that it is true for the Lie
algebra G, Given A« G, we have

(A, FE={Aer(e™), Fr={A, for(}er(g™
for all fcC™(M). On the other hand, we obtain

{(adg (AT, £ = G/ Treml- rade(AD x|
= L1 (arlem(= 17 (7))
tal
={4, Fr(eHr(g ™).
Hence 7(g) (/Z) ={adg(A)]” and the conclusion follows,

Q.E.D.

Let Sf be the set of invariants in S under the adjoint
action. From part (ii) of Theorem 3, every peS' veri-
fies V(q)(b)»[) for all gc§. Then p is an invariant
function on M under the action of . Hence if (»,G, M)
is a transitive action we conclude that the invariants in
S are represented by constant functions over M,

These results are similar to the well-known proper-
ties about the representations of enveloping algebras!
induced by unitary representations in Hilbert spaces.
Given a unitary representation (U, (,#) there exists a
dense domain 4 (the Girding domain) in A/ which is

15
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left invariant under the action of § and also by the
operators associated with the Lie algebra G. Thus, we
get a representation of G by operators defined on 4~
and we can associate with every element « of the
enveloping algebra (/ of G an operator # defined on 4,
I we denote by O”(#) the set of operators of #* into
itself, we can write the result analogous to Theorem 3
in terms of enveloping algebras in the following way:

Theovem 4: The map #e [/—ucO™(#) verifies,
(i) It is a representation of ¢/,

(ii) For each ucl/, U(g) (#)=[adg{)]” where adg(g<q)
denotes the adjoint action of G over {/,

Similarly, when (U,G,//) is irreducible the elements
of the set ¢/ of invariants in // under the adjoint action
are represented by constant operators.

It is not possible to extend the representations of S
and {/to all the elements of their quotient fields D(S)
and £ ((/), respectively. Indeed given £ =p,/p,D(S)
(P1,5€S), the function #=5,/p, is not always well
defined on the whole M, However within the definition
domain of % it holds 7(g)(%) =[adg(h)]” where adg(gc§)
is the adjoint action of ¢ over D(S). The same com-
ments may be translated to the elements of J ({/)

With respect to the application of Theorems 3 and 4
in the formalism of classical and quantum mechanics,
it is clear from Theorems 1 and 2 that the relevant
algebraic structures of observables are those associated
with the Lie algebra of the projective group, We
emphasize the fundamental role played by the adjoint
action of the projective group in the transformation
properties of the observables. In this way a wide class
of observables may be studied in terms of the adjoint
action of 7, over the algebraic structures associated
with its Lie algebra. It is known! that several physically
interesting observables are in the quotient structures
D(S) and 0 ({/) or more general ones. Then they may not
be defined for all the elementary systems, since only
S and (/ admit always a well-defined representation,
Thus, the analysis of the representations of the algebra-
ic structures enables us to know whether a given ob-
servable is or is not admissible for an elementary
system,

3. THE COADJOINT ACTION
A. The orbits under the coadjoint action

Let ¢ be a connected Lie group with Lie algebra G
and let G* be the dual vector space of G. The coadjoint
action {cad, G, G*) of G on G* is given by!l'18

(cad(g)a,A) =(a,ad(g)4), g<q,

Let E={A,:a=1, ..., N}be a basis of G with com-
mutation relations [ 4,, A5l =3,c%s4,. We shall denote
by B*={a%:o =1, ..., N} the dual basis of B (i, e,,
(@%,Ap =0,9 and by {a,:a=1, ..., N}the coordinate
functions in G* associated with B*, It follows immediate-
ly that (cad, ¢, G*) is a linear action of § with matrix
representation relative to P* verifying

(Cad(ﬁ,’))ae: (ad(g)’i)sa, 14)

where (ad(g)™) is the matrix associated to ad(g)™! in the
basis R,

acG*, A<G, (13)
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Example: Consider the SU(2) Lie group, Its elements
may be written as

A(n, 6) =cos6/2 - i(no) sin6/2, |n|=1, (15)

where 0 = (0,,0,,05) are the standard Pauli matrices,
A basis of G is given by B={¢=(1/2{)0}. The adjoint
action of SU(2) is of the form

adA(n, 6)(rg)= (R(n, 9)r) - £,
with
R(no)r=cosdr + (1- cosb)(nr)n + sind(n xr),

Since R(n, 6)€SO(3), then R(n, 8),;=[R(n, 8)!],;. There
fore, the coadjoint action of SU(2) relative to the dual
pasis B*={8*} is

cadA(n, 6)(s -8*)= (R(n, 6)8) - 8*,

The coadjoint action of ¢ is generated by a linear
action of its Lie algebra G defined by

<cad(/4)a9/4’>:<a! [ﬂ”AD’ A’A'EGJ ac G*, (16)

The right member of this equation coincides with the
expression of the so-called “Kirillov form”!Y)

Ba(/]',/])'='<a, [’4',74]>) ﬂ,ﬁ"EG, (IE_G*, (17)

which defines a skew-symmetric bilinear form over G
for every acG*,

With every acG* we associate the set 0,
={cad(g)a:g=G} called the orbit of @, and the closed
subgroup ¢ ,=\g€;:cad(g) a=a} called the isotropy sub-
group at a, From the theory of Lie group action over
differentiable manifolds, 1" it follows that ¢/, has a sub-
manifold structure of G* diffeomorphic to the quotient
manifold ¢ /i ,. Using this result we obtain,

Proposition 3: The dimension of ¢/, equals the rank
of the Kirillov form B, at a,

Proof: Since U, is a submanifold of G* diffeomorphic
to G/G,, then dim J,=dim ¢ - dim ¢, =dim G - dim
G,, where G, is the Lie algebra of the subgroup ¢ ,.
On the other hand, from (16) and (17) we deduce that
G,={AcG:B,(A, A7) =0 ¥ A’<G}; this implies that dim
G,=dim G-rank B,, Therefore, we conclude dim
(,=rank B,, Q.E.D.)

There is a deep influence of the algebraic properties
of the Lie algebra G over the structure of the orbits
O, Let us remind! ourselves that at the algebraic level
G is characterized by two nonnegative integers defined
in terms of the matrix function M (a),,=3,c,a, by

fwtaf
nG)=

{@{sesra n} rankMG ((?),

S(G)=dim G - 2u{G),

18)
We have called them canonical and central dimensions
respectively of G, The role of these integers is funda-
mental in the analysis of the “generic orbits, ” that is,
the orbits in G* of maximal dimension, Let GX, be the
set of points a<G* such that dim ¢, is maximal; we
have,
Proposition 4: acG},, = dim (,=2n(G). (19)

Proof: By (17) we have B,(A,, Ag) =2.Cas®,, Where
{a,:v=1, ..., N}are the coordinates of the point ac G*
with respect to the dual basis B*, so that we obtain
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rank M;(a) = rank B, (20)

Therefore, if acGp,,, from Proposition 3 and (18) we
deduce that dim ¢, =2n(G), (Q.E.D.)

In order to find the orbits it is very important to
know the invariant functions under the action of ¢, A
function f differentiable in a neighborhood of @ in G*
is said to be invariant at a if there is a neighborhood
Uof (e,a) in Gx G* on which flcad(g)a’) = fla’) for all
(g,a’)cU, The set of these functions will be denoted by
Cl(a, G*), In addition we shall denote by C(G*) the set
of differentiable functions f on G* such that f[cadg(a)]
=f(a) tor all g ¢ and a€G*; they are the global in-
variant functions, It follows easily from (16) that the
action of G over the functions f defined in G* may be
written:

(cad(A,) f) (@) :Qc;Ba, aadf

(21)
8

Since ¢ is a connected Lie group, then faCl(a, G*) if
and only if cad(4,)f vanishes on some neighborhood of
aforall =1, ..., N, Similarly fe C/(G*) if and only
if cad(A,)f vanish on G* forall o =1, ..., N, At this
point w& find an important relation with the theory of
Casimir invariants, since from (21) the set C!(a, G*)
coincides with the set of “formal invariants” of G!8
defined at the point a. Moreover we have the following
result about the maximal number of functionally inde-
pendent elements in C/(a, G*):

Proposition 5: ac Gy == dim Ca, G¥)=s(0), (22)

Proof: It acGle,, Frobenius Theorem!? implies
dim C’(a, G*)=dim G* - dim(,. Therefore, from (18)
and Proposition 4 the conclusion follows. (Q.E.D.)

The main property of the orbits under the coadjoint
action is that they have the structure of sympletic
manifolds, Moreover, the restriction [(cad)™, ¢, 0] of
the coadjoint action over a given orbit ( is a transitive
strict Hamiltonian realization of G.!"!! Since the
dimension of a symplectic manifold is twice the number
of pairs of canonically conjugate coordinates, Proposi-
tion 4 implies that the canonical dimension n(G) of G is
just this number for the orbits of maximal dimension,

It is known!! that each transitive strict canonical
realization of ( is locally equivalent to a realization
[(cad)”, G,0]. The manifolds which are locally diffeo-
morphic to a given orbit U can be completely classified,
Indeed, they are the covering manifolds of ¢/ .2 More-
over, if ¢/ is simply connected, its locally equivalent
realizations are in fact equivalent to [(cad)”, /, 0], The
same is truef when the isotropy subgroup at the orbit
(is connected, These results allow us to construct the
CES of an invariance group G, in terms of the realiza-
tions [(cad)”, &g, 0] of its projective group (. From
Propositions 4 and 5 we see the important role played
by the characteristic dimensions in the context of CES.
Thus, n((;o) is the number of pairs of canonically con-
jugate variables of the CES of ¢;; with maximal dimen-
sion, On the other hand, s(G,) coincides with the num-
ber of invariant functions associated with the CES of
maximal dimension,
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B. The sets of classical and quantum elementary systems

One of the most useful tools in the formulation of
quantum mechanics has been the use of quantization
rules to construct quantum observables. In this context,
the Hamiltonian formalism play a central role. This is
S0 since observables are constructed in both classical
and quantum mechanics in terms of canonical variables.
Then, there is a wide class of quantum observables
which have a classical analog, Nevertheless, the spin
observable has been considered as an exception in this
correspondence. It fact, it was usually assumed that the
spin is a consequence of relativistic quantum mechanics.
But the analysis of the Galilean invariance® shows that
the spin is also implicit in nonrelativistic quantum
mechanics, On the other hand, the applicatioun of Lie
group theory to classical mechanics™® shows how the
spin may be also considered as a classical observable,
From this it may be expected that the analogies between
classical and quantum systems have a group-theoretical
origin, In particular, it must be implicit in the relation
between Lie group actions in classical and quantum
mechanics.

It is an empirical fact that there exist strong analo-
gies between the set & () of realizations (cad, §,0) and
the set R(G) of equivalence classes of irreducible
unitary representations (U, G,4). It is well known from
the Kirillov’s work!! that there is a bijective corre-
spondence between the sets ¢ () and R(G) for simply
connected nilpotent Lie groups, Unfortunately, the
correspondence between orbits and irreducible unitary
representations it is not so clear in other cases. How-
ever, there seems to exist a general rule to break
é() and R(G) according to types of elements and to
define a bijective correspondence between them, Let
us see an example to illustrate these comments,

Example: Let E(2) be the bidimensional Euclidean
group. The elements of E(2) are labeled by (a, R(6))
with aeR?, 6<[0,27). Its Lie algebra is generated by
{Py, Py, L} with commutations rules

[Ls pi]:pZ, {[—9/)21:'—/91’ [ph /)2]:0- (23)
The coadjeint action is given by
p’=R(O)p, U'=l+apj~aypi. 24)

Hence we find two types of orbits,

(D {p}, p#0. The orbit is C,(p) xR() where C, is the
circle {pl=p.

(1) i}, I<R, The orbit is the point (0,7),

Similarly there are two types of classes of irreduci-
ble unitary representations.

(0’ [p], p#0. The group acts over the square inte-
grable functions on C, by

[ U, R)¢](p) = exp(ipa)s (R 1p). (25)

(In- [11, ! positive integer. The one-dimensional
representation

Ufa, R(9))=exp(ild). (26)
It seems natural to associate (I) — (1)’, (II) — (I)".

Thus, we are faced with two questions, The first
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question is to give a meaning to the term “type” in
£(G) and R(G). The second is to define the correspon-
dence between types of £(G) and A(§). Both are closely
related with the classification of the action of ¢ over
the functions and the operators of the orbits and the
unitary representations, In physical terms, if we think
of ¢(¢) and R(G) as sets of elementary systems, two
classical or quantum elementary systems would be of
the same type if they admit the same observables, and
the correspondence between classical and quantum types
would be the quantization,

In é() the appropriate definition of type turns out
to be the concept of “stratum,”?! i, e, , two realizations
[(ead), 4, 4] (f==1,2) are said to be in the same stra-
tum when they have conjugate isotropy subgroups. As
a consequence we easily obtain that there is a diffeo-
morphism b: ) — ; which commutes with the coadjoint
action of ¢ over the orbits, Moreover, if we define a
map feC™(0) — FreC™((y) by f/(x) =Ff(b"'x), we have that
it also commutes with the action of g over the differen-
tiable functions. Therefore C*(¢);) and C*((,) are
identified from the point of view of the action of §. This
means physically that the CES described by the realiza-
tions [{cad)”, ¢, 0, (F=1,2) admit the same observables.
With respect to (), we do not know a definition which
describes the types in a precise way. However, in
practice they may be identified in terms of the invari-
ants under the group action, Each type in ¢ (G) defines
a characteristic set of elements {/, ..., k,} in the
classical algebraic structures (S, D(S), ...), which are
invariants under the action of the group over all the
orbits of the type and hence each one of these orbits may
be labeled by the constant values {f;, 7y, ..., %}, This
parametrization is useful to distinguish the orbits in a
given type. Thus, for algebraic Lie groups the orbits of
maximal dimension are almost completely distin-
guished!! by the constant values of rational invariants,
In many cases one is able to construct the quantized
version {H,, ..., H,} in the quantum algebraic struc-
tures (¢, 0((), +++ ) of the elements {4, ..., h,}. The
set of irreducible unitary representations on which
{1y, ..., H,} are invariants defines a type in R(G)
which is the quantum analog of the type in ¢ () asso-
ciated with {/y, ..., k..

Another interesting feature of the analysis of types
in £(¢) and R(G) is their connection with the represen-
tations of Lie algebras, Thus, every type is associated
with a particular realization of the Lie algebra G in
terms of canonical variables, This fact may be observed
in the formalism of Pauri and Prosperi? of the classi-
fication of CES, and also it seems to hold for QES, It
is also related to the canonical properties of the
algebraic structures associated with G!, It seems to be
generally valid that these structures can be constructed
in terms of #(G) pairs of canonical variables and s(G)
invariants, In particular, for algebraic Lie algebras
this feature appears at the quotient field level, With the
terminology of Pauri and Prosperi a set {g,,7;; x,;
i=1, ..., n(G); ¥=1, ..., s(G)} of canonical variables
and invariants generating the classical algebraic struc-
tures of G is called a “classical regular schema’” and
it corresponds (see Propositions 4 and 5) to generic
orbits. In practice it is not difficult to find the quantum
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analogue set {Q(, B, X,;i=1, ..., n(G); =1, .., S(G)}
which defines an associated “quantum regular schema”
and corresponds to a generic class of irreducible
unitary representations. Therefore, the canonical and
central dimensions 7(G) and s(G) may be interpreted as
the number of degrees of freedom and the number of
labeling parameters of the generic elementary systems.

4. APPLICATIONS
A. Nonrelativistic elementary systems

Let G, be the Galilei group; its projective group gA(, is
constituted by the elements

g=(7,b,a,v,A4), 7,bcR, a,veR?} A=SUQ),
(27)
with the composition law
8182 = (11 + Ty + wyg, by + by, a0 + R(A)Vy + bV, vy
+ R(Ap)Vy, 414,), (28)

where wyy =21b,/2 + v, R(4,)a, and R(4) is the image in

SO(3) of AcSU(2) under the covering homomorphism,

The projective homomorphism q:Go ™ G is given by
(1,0,2,v,A)——(b,a, v, R(4)), (29)

and evidently Kerq = {(r,0,0,0, +1): 7R} is a central
subgroup of go A basis B={%,4,P, K,g} of the Lie
algebra GO is fixed by the followmg relations;

(7,0,0,0,1)=exp(- 74), (0,5,0,0,1)=exp(- bH),
(0,0,a,0,1)=exp(@ak), (0,0,0,v,1)=-exp(vK),
30)
(0,0,0,0, An, 6)) =exp(6n ),
ind it verifies
(Jis Kil=€umkne [ 91y Pl=€i50 Py [ G5r 9517 €110 G
(Key Pyl== 8, K Hl== P
(31)

All other commutators are zero, The characteristic
limensions of (JO are n(Gy) =4 and 9((,0)_

In the coordinate system {m, h,p,k,J} of the dual basis
B* in G the coadjoint action may be written as follows:

wm!l = 7}'7,
ht=h+3mv+ (R(A)p) - v,

p'=R(A)p+ mv,

32)
k'=R(AkK+DIR(A)p+ bmv—na,
=R +VvxRAK+axR(4)p+ maxv,
and determines three independent invariants
, 2mh-p?, (mj+kxp)i (33)

The analysis of the algebraic structure of D(S) sug-
gests! the use of the coordinate system {#,u,q,p, 8} in
G§, where

q=-k/m, s=§-axp, u=h-p?/2m (34)
have the physical meaning of position, spin, and inter-
nal energy, respectively. Let us note that these
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coordinates are defined only at points with » #0, and
in terms of them the coadjoint action reads:

mr=m, u'=u

7

Q':R(A)<q~%p)—bv+a, (35)

p'=R(A)p+my, 8 =R(A)s.

In this way, one finds the following physically inter-
esting types of CES,

@ {m/s/u}, m#0, s=0, These include two types
according as s >0 or $=0, The state space is the
manifold IR®(q, p) x S%(8), where S}(s) is the sphere
|si=s. The sympletic structure is determined by the
Poisson bracket relations,

la,ab=ut=1{s,at={s,p,4=0,
{qi’f’l}: 049 {se SJ}:fuksno

The kinematical action of the Galilei group is generated
by the functions

H=p/2m+u, P=p, K=-mq,

(36)

g=qxp+8s. (37
From (35) we obtain that the evolution law is
a() =q(0)+ p0)/m, p()=p0), 8(h=8(0).  (38)

It follows at once that the dynamical action of ¢, takes
the form

7= (t;a0),p),80) — = = (10" (), p’ (t), 8’ (")),
where

q’ (1) =Rq(t) +vi+a,
8’ (i) = Rs(f).

b=t+b,
(39)
p’ (1) = Rp(f) + mv,
It is clear that {w/s/u} (m #0) describes a nonrela-
tivistic CES with mass »7, spin s, and internal energy
#, We see that these systems admits a position observ-
able which transforms correctly under the whole
Galilei group, One proves easily that two CES{m9 s, 1t
({=1,2), which differ only in the parameter u, are
equivalent realizations of ¢;, On the other hand, since
the associated orbit is simply connected, all the CES
locally equivalent to {nz/s/u}» are in fact equivalent,

(m) {0/p/x s}, p>0, s=0. They are associated with
the orbits on which w1 =0, kxp=0, and p#0, If we
define

T=-k-p/p?, r=3-p/p, wW=]xp, (40)
the state space is the manifold R (%, 7) x{(p;w)<R®: |p|
=p, p-w=0} and the kinematical action of ¢, is given
by

"t =h+v-Rp,

p’=Rp, T=7-b, M=2},

41)
w’ = RwW + [(a~ 7v) xRp] % Rp.
This leads to the evolution law
h(l)=1(0), p()=p(0), 7(t)=7(0)+¢, X()=x1(0),
w/ (1) =w(0). (42)

We may interpret {0/p/+ s} as a nonrelativistic CES
with zero mass and helicity x=x s. It does not admit

a position observable because the condition {q”p,}: Oy
implies {q,p?}=2p+0, which is absurd since p* is
constant. On the other hand, we note that 7 may be
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interpreted as the “age” of the elementary system, The
isotropy subgroup under the action of G, is {(b,a,v, R):
b=a,;=v3=0, R=1}, By its connected character we de-
duce that {0/p/+ s} do not have inequivalent locally equi-
valent CES,

The characterization of the QES of ¢, is facilitated by
the analysis of the quotient field! J (/) associated with
G,. Infact O(//) is generated by the set {M,U,Q, P, S},
where

Q=-K/M, 8=J-QxP, U=H- P*/2M (43)

have the physical meaning of position, spin, and inter-
nal energy, respectively. Moreover, there are three
independent Casimir invariants,

M, MH-P?, (MJ+KxP)%, (44)
The QES with physical interpretation are of the form®

() [m/s /ul, m+0, 2s nonnegative integer. The state
space is the Hilbert space of functions ¥ = #(p) with
2s +1 components and finite norm,

2 [" (PYp(P) d®P, yty= 25 o1y

-s<fss

The action of QAO is generated by the operators

M=ml, H=P*/2m+ull, P=p, K=-imV,xP+8,
(45)

where 8 is the (2s + 1)-dimensional spin operator,

The elements Q and 8§ of J(/) admit a representation
as operators in the Hilbert space. Of course from (43)
and (45) we get

Q=iv, §=8@ (46)

which correspond to the standard position and spin ob-
servables in nonrelativistic quantum mechanics. The
kinematical action of ¢, transform {Q, P, §} in

Q, P, 81=U"){Q, P, 8} U(g) according to

Q':R(Q-%P)— bv-+a,

S'=RS,

(47)
P’'=RP +mv,

From this we obtain the evolution law
QAH=Q0) + (P(0)/m, P =P(0), S(H)=S(0) {48
and the dynamical action of ¢, over {Q, P, 8} becomes
QN =RQ(H)+ Vt+a,
P/(t") = RP(f) +mv, 8/ (t')=RS8(f).

tr=t+b, 49)

Let us note that these equations are linear in {Q, P, S}
and hence they continue to hold if we replace the opera-
tors by their expectation values,

Clearly [m/s/u] (m> 0) describes a nonrelativistic
QES with mass m, spin s, and internal energy «. It
admits a position operator which transforms correctly
under the whole Galilei group. Two QES [m/s/u;]
(=1, 2), which differ only in the parameter «, turn out
to be equivalent,

()’ [0/p/x 5], >0, 2s nonnegative integer, The
group acts over the square integrable functions
P=¢(E,p) on the cylinder {p? :1)2, any E}, The genera-
tors of §, are represented by:
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M=0 H=E, P=p, K=-1ip 5%, J=iv,xp+2Z, (50)
where Z=xs(py(p +ps)"L, po(p+py)7t, 1), Now, the
elements @, S of J(//) do not admit a representation as
operators in the Hilbert space. On the other hand, the
helicity observable A=J-P/p is represented by + sl and
the operator 7=~ K-p/p? may be interpreted as the

“age” of the system,
The QES described by [0/p/+ s] has zero mass and

helicity + s, We note that it does not admit of a position
observable, %

B. Relativistic elementary systems

Let G, be the Poincare group; its projective group
coincides with the universal covering group. Thus Ao
is the set of elements (a,4), acR4, AcSL (2, ) with
the group law

(ay, A lay, Ag) = (a; + A(Aay, AjA,), (51)

where A(A) denotes the Lorentz transformation asso-
ciated with AcSL(2,C). The projective homomorphism
7 is given by (a,A) — (a, A(4)) and Ker § is the central
subgroup {(0, ill)} of ¢y. A basis B= {#,P,K, 9} of Gy
is determined by the equations:
(a,1)=exp(-a®H+a-P), (0,4(n,6))=exp(én -g),
(0, H(n, ) = exp(¥n - K),
where A(n, 6) =cos6/2 - ino sine/2, H(n, )

(52)

=cosh /2 - no sinh 3/2, withln\=1. We

have
[ﬂi,Kqu“kK" U/‘ pj]: ”kpk’ [9‘, ‘ngfiugk, (53)
K== 0%, (KL, P== 64, (KEH]== P,

all others commutators are zero, Sometimes, it will be

convenient to use of the covariant generators {/2*, 4+
mvu} defined by pr= H /j)’ /}YM—K‘ M — Hkﬂk

The characteristic dimensions are 7(G,) =4, s(Gy=2.

The coadjoint action of go takes a simple form when
expressed in the coordinates {p*, m** =~ m"*} asso-
ciated with the covariant generators in Go, Indeed, we
get

p'=AA)p,

m = AN QY +av A(AY; b ~ @A AP,

(54)

The invariant functions are generated by p? and wz,
where w is the Pauli— Lubansky 4-vector w*

ey 0,/2. In the coordinates {#,p, k, I} the action of
the subgroup {(a,A(, 0)} is

h'=h, K =R, 6)K+ap)-ha,

(55)
p’'=R@, d)p, §=R(n,6)]+axR,o)p.
The classical algebraic structures suggest the
coordinates!:
__k  __pXxw (wp)p
== mh(m +h)°* == mh(m+h)’ (56)
where m = (k* - p?)!/2, Evidently they are defined only at

points with p®=5%~ p?> 0. From (55) we obtain that
their transformation law under the subgroup {(z, A(n, 8))}
is of the form
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a’'=R(n, 6)@@~- a’p/h) +a, 8’ =R(n,0)s. (57)

One finds the following physical CES:

@) {m/s}, m>0, s= 0. The state space is R%(q,p)
xS(8) with the symplectic structure induced by the
standard Poisson bracket relations (36). The kinemati-
cal action of G, is generated by

8Xp
H=(m?+pH'/2, p=p, K:—qh+m+h, (58)

J=qxp+s,
We have from (57) that the evolution law takes the form:

a()=q(0) + #(0)/h, p@®=p(0), s()=8(0). (59)
The observable q transforms as a position observable
under translations, but its transformation properties
under pure Lorentz transformations® correspond to this
character only when s =0, Thus, {m/s} describes a
relativistic CES with mass » and spin s, and it admits
a position observable with the limitations quoted above,
Since the state space is simply connected, there are not
other CES locally equivalent to {m/s}.

(1)) {0+ s}, s=0, These orbits correspond to points in
Gy with p2=w?=0 and p*> 0, The coordinates {g, 8} are
singular, A suitable coordinate system is {X,p, A} with

ko, _1p
R M ipl”

The identity pw =0 implies the existence of s> 0 such
that v =% sp, Then, if follows at once x=xzs,

X=- (60)

We find the following Poisson bracket relations:

{ji,x!}_:eijkxk’ {X!,[)I}’: 5!1’ Mllkpk/]ﬁﬂ

(61)

Therefore, X behaves as a position observable under
space translations and rotations, Nevertheless {x,x’}
vanish only when s =0. Hence, only in the case s=0
can we consider X as being a position observable,
Moreover if s#0, given r such that {j, »/}=¢** and
{rt,p?} =8, we find that r - X is of the form f(p?)p, and
therefore that {+!,»/}={x? x'} =0,

o, )= -

One finds that the state space is IR*(X)  (R®(p) - {0})
and the generators of the kinematic action of G, become
H=lpl, P=p, K=-|p|x, J=xxpzsp/|p|. (62)
The evolution law is X(f) =x(0) + /p(0)/ [P(0) |, p(!) = p(0).
Hence {0/+ s} describes a relativistic CES with zero
mass and helicity +s, and it admits a position observ-
able with the correct transformation properties under
translations and rotations only when s =0, Moreover
it is not difficult to see that the isotropy subgroup at the
point {x=0,p=(0,0,1)} is the connected subgroup of
G, generated by the Lie subalgebra {4~ 3, 93, g1+ A2
+apt, 92 K1+ 2P?}, Therefore, {0/« s} determines
a unique CES.

In the quantum algebraic context of the Poincare Lie
algebra, the suitable elements to represent the position
and spin observables are given by1:
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Q=- XKH'+ FK) +-——-—M§(:XH),
s—_ W%, W-P)P_
M T MEM T ) (63)

where W is the spatial part of the Pauli~ Lubansky 4-
vector W*=¢*"»M,, P,/2 and M is the square-root of
P?=H%- P?, There are two independent Casimir in-
variants P* and W? which verify P?=M?, W?=- M8,

We have the following relativistic QES with physical
meaning:

(0’ [m/s]), m>0, 2s a nonnegative integer, The group
acts over the (2s +1)-component wavefunctions =¥ (p)
with finite norm

13
||¢||2=f¢1(P)¢(p)‘{7g, wfl,b: ‘— d)“

where p° = (m?+p*)!/%, The generators of the Poincaré
group are represented by the operators®

o_pu -0 pxs' . ()
P*=p ’ K=-ip vp_m’ J:ZV’_XP"'S ’ (64)
where V,= (3/8p!, 3/ap?, a/3b%, and 89 is the (25 +1)-

dimensional spin operator, From (63) and (64) it is
straightforward to obtain

— P _ Qs

Q=1V,~izrnr, S=8¢ (65)
We see that Q is precisely the Newton—Wigner position
operator, % It transforms in the usual way under the
rotations and translations; but its behavior under pure
Lorentz transformations has no simple interpretation,
The evolution law of the observables |Q, P*, 8} is the
same as the one verified by their classical analogs,
Therefore, [1/s] interpreted as a relativistic QES with
mass # and spin s and it admits a position observable
with the limitations already quoted.

(I’ (0/£ 5], 2s a nonnegative integer. They verify
W=Ww?=0, p°~ 0. This implies a relation W=7+sP,
The Hilbert space is the set of complex-valued functions
#=¢(p) with support in the future lightcone C,={p:p?
=0,p"- 0} and finite norm

, 73
uar,»n‘*:/ Le(ny 2R
c, P

The infinitesimal generators are represented by?:
J=iV,XP+Zy, (66)
where Z; == s (- p? (b°+/7 ) P Y(p2+p%1, 0) and Z,
=2s(pU(p*+pN7L, p2(p*+p%), ). 1t is clear that Q

and S are not defined in these representatlonsn If we
define

25

Pe=pt K=~ip'V,+ 2,

J-P

X=- 3KH 1+ 0 K), A= B (67)
a simple computation shows that
. P y
T~ = —
X=i%-igpp —Tpy» AL (68)

1t is known®® that [0/+ s] admits a position observable
only when s=0. In this case X reduces to the operator
v, ip/2 Ip!? which is precisely the position observable
of this QES.
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The generators of the representation can be written
in terms of p and X according to

H=[p|, P=p, K=-1i([p|X+X[p]), I=XxpzsL,

Ip!
(69)

The evolution laws of P and X are identical to their
classical analogs. Thus, [0, +s] describes a relativistic
QES with zero mass and helicity +s, and only when

s =0 does it admit of a position observable,

C. Elementary systems of the Weyl group

The Weyl Lie group ¢, is the group of Poincaré
transformations and dilations acting on Minkowski
space—time x = (x%, X} according to x*=xAx +a, Since
the Lie algebra G, has no nontrivial infinitesimal
exponents, *® the projective group Gq coincides with the
universal covering group, Thus &, consists of of the
elements (a, A, ) where a<IR?, /% SL(2,C), x>0, with
the group law,

((115‘41) A )((12"4"’ A2) = (ai + AiA(A )”Z’A1A29 A1)\2)» (70)

The projective homomorp}nsm q: go is given by (@, A)

— (@, A(A), 1), and Ker § is the central subgroup
{(0,z1 1)} of ¢y. We define the basis 14 P, K, 9,01 of
G, by means of Eq. (52) for {#,p,K, J} and the follow-
ing equation for 2,

0,1, ») =exp(-logr-0). (71)
The nonnull commutation relations are given by (53) with

the added one [/, P*]=~ P*. One finds that the charac-
teristic dimensions of G, are n(Gy)="5 and s(Gy) =1.

In terms of the coordinates |p*, m**=— m"" d} of

G¢, the coadjoint action reads
pr=2TAA)p, A=
= AAYPA(AY ™ + 7Y a* A(A)s pP -

d+}\=1(1A(A)f), (72)
@ AA) DY),

i uy __

There is only one invariant function given by w*/pt,
The analysis! of the quotient field D(S) suggests the use
of the coordinates {r*,p* w*}, where v*=(dp*+m"p,/
p°. Indeed, the coadjoint action takes the following
simple form:

pr=AIAAYp, wr=x"TA(A)w, (73)

We shall consider only the CES corresponding to the
orbits of points [, p¥, "} in G with p*>0 and p°> 0,
They are labeled by a nonnegative number {s} deter-
mined by the constant value of the invariant function
in the form s?=— w?/p%, The state space is the manifold
RYG) <{(p,m) cIR®: p~ 0, p°=0, pw=0, wl=— .92/)2}
with the sympletic structure induced by the Poisson
bracket relations, !

{/)u’ /)p}: {/)u’ u,v}: o, {f)u’yv}:guu’

{TH’1,111‘,:6411/7\0/))24,,/(,)2)2, {Vu,wv}:

¥’ =2A(A)r +a,

—w"p ”)//)20
(74)

One may also define the spin observable 8 as given by
Eq. (56). Thus the orbit becomes the manifold IR*(»)
x{peR4:p?> 0, p" > 0} x Si(8).

(w"p¥

From (73) we see that the evolution law is
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7’0([):7'0(0)_t’ r(t):r(o)s pu(t):Pu(o)’
w* () =w* (0). (75)

We notice that »*(f) does not correspond to the evolution
law of the spacetime observable of a free particle. It

is a consequence of the manifestly covariant kinematical
action of the Weyl group as given by Eq, (73). We
emphasize that this description in terms of 7" is a
generalization of Aaberge’s analysis®’ of free relativis-
tic particles of spin 0. Let us see that a convenient
position observable is provided by

x:r—%;r"., (76)

In fact from (75) we easily find that its evolution law is
x(1)=x(0) + tp/p°, which coincides with the expected one
for a free-particle position observable. Under the
dynamical action of one element g=(a, A, ) of G,, every
trajectory x (/) = (£, X(#)) is mapped into another one
x'(t)y=(t,x’(f)). Now, we want to prove that x(#) trans-
forms like a space—time curve under the action of the
Weyl group, Since x(f)=#(0)— () p/p" we have

r () V(t)

X(1) =7 (0) =~ = A7 (0) + A,

On the other hand, from (75) and (76) we have
0
70ty =100) = ' =2 <A° )+ A " r“(t)) A% %6-7%),

Hence, we get

X' (Y =2Av(0) +a - )\y ‘(1)

Ap=AAx(t) +a, (77)
which proves the assertion, Therefore, X may be
interpreted as a position observable which transforms
under the Weyl group as we should expect. However, the
components of x verify the standard relations {x*,x'}=0
only when s =0,

We see that {s} describes a CES with spin s and
arbitrary positive mass, It admits a position observable
with the quoted properties. There are no other CES
locally equivalent to {s}, since their associated orbit is
simply connected.

The generic QES of the Weyl group are denoted by
[s] where 2s is a nonnegative integer. The Hilbert space
is given by the (2s + 1)-component functions ¥=9 (p)
with support the future inner light cone Q*={p:p?> 0,
P> 0} and finite norm

uwuzzf VPP, = 2T i (78)
Q-O-

-s<j<g
The action of the projective group is of the form?

[Ula, 4, )Yl(p) = XD [A(p)MAA (A (A);)TUINA (A);1],

(79)

where A(p)= (m+p°+0-p)[2m(p° +m)]1/? and D the
(2s + 1)-dimensional irreducible representation of SU(2),
The Lie algebra is represented by the operators?:

(s)
Pt =p*, K_—zp—po-—zpv PLir,

m+

(80)
J:iV’Xp+S(3), D=-i pu%_‘.z)’
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where m = (p¥)1/? is the mass variable with range 0 <m
< + o0,

From the analysis of the quotient field! J({/) and
Eq. (76) we have that the candidate to describe the
position observable is

xzn-%[go-, pﬂ (81)

where [, ], denotes the anticommutator and R is defined
by

u_l p*| 1 uy
re=3o.25] + St al. (62)

From (80) we find

(8l
RO:—ia—z-o-, R=v, _s(_:%v) (83)

Therefore the position observable is represented by the
operator

. P 3 . P 8'Ixp
X St

m(m +pY)° (84)

Let us note that in the mass representation ¥(p°, p)
—~ ¢ (m,p)=9((p?)!/%,p), it becomes

S(S)x

X=iv, m(m +pY?

o+ (85)
-1

2(p")

which reduces to the Newton—Wigner operator when the
spin vanishes. Moreover, we see that only in this case

the components of X are compatible observables,

The evolution law of the operators {R*, P* W"} is
given by

RY(H)=R%0)-t, R()=R(0), P*(t)=P*(0), W*()=W"(0)

(86)
Hence we get
X(#) = X(0) + tP/ P, (87)

The transformation properties of X under the dynamical
action of the Weyl group are the expected ones as far as
dilatations, translations and rotations are concerned.
But its behavior under pure Lorentz transformatinns
has no simple interpretation, Therefore, [s] describes
a QES with spin s and arbitrary mass and it admits a
position observable with the above limitations,

If we define the observables T=—*% and 7=- R,
From (75) and (86) we see that their time evolutions are

M) =1(0)+t, 7(t)=710)+¢ (88)

They may be interpreted as the “age” observables of
the elementary system {s} and [s], respectively, We
aote that since 0 <p® <, the operator 7=:i3/3p° is
symmetric but is not a self-adjoint operator,
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Exotic spinors in superconductivity
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The existence of inequivalent types of spinors in spaces which are not simply connected is mathematically
investigated. The mathematical resuits provide a purely geometrical explanation of the charge dependence

of quantized flux and Josephson current in superconductivity.

INTRODUCTION

When space—time is not simply connected, it is im-
possible to give a unique definition of spinors. There
exist several inequivalent possibilities which are in one-
to-one correspondence with a certain cohomology group
of space—time (which we describe later on). If this
cohomology group is nontrivial, we call the spinors
exotic. In the first seven sections the mathematical as-
pects of exotic spinors are discussed. We concentrate
mainly on Dirac spinors which represent physically the
most interesting object. Beginning with Sec. 8, we give
an application of the theory to superconducting rings.
The geometrical aspects are particularly simple in this
case: Only two types of spinors are possible. We then
construct a model in which both types of spinors are
used in the quantum theory of the superconducting ring.
The functional form of the charge dependence of quan-
tized magnetic flux and Josephson current is derived in
a new way and it agrees with experiment. We test our
assumptions by substituting electron pairs for exotic
spinors and rederive the aforementioned quantities. The
results are identical for both cases.

The first sections of this article are purely mathema-
tical. They require some basic knowledge of modern
differential geometry and cohomology (in particular the
Cech definition). The reader who is not familiar with
these subjects but interested in the application to super
conductivity, may take Propositions II and IV of Sec, 7
for granted. The rest of the paper is then self-contained,

1. DEFINITION OF SPIN STRUCTURES

Suppose that we are given a four-dimensional, ori-
ented manifold M with a Lorentz metric g (signature
+—~ - ~). We sghall assume that M is time-oriented, i.e.,
there is a timelike vector field t on M. If y_is a time-
like vector at xc M, then y_is said to be positive if
glv,,t,) is positive, In addition, we make the technical
assumption that M has a simple covering by open sets
U,, which means that every intersection of the U, is
contractible, Let £ denote the bundle of oriented and
time-oriented orthonormal frames in M, £ is a principal
bundle with the special Lorentz group L, as structure
group. L, has a universal covering called spin. The
covering projection p: spin ~ L, has a kernel K, iso-
morphic to ZZ,, K, lies in the center of spin, Now we
want to define spinors. By definition, a spin structure
consists of a principal bundle ¢ with group spin together
with a bundle map 1 such that the diagram
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E n ¢
N\, -

commutes. (n,;r are the canonical projections of the
bundles ¢ and %). Furthermore, 77 has to satisfy

n(zg) = n(z)p(g),

for all z¢ E and gc spin., Assume that T exists. Let d
be a representation of spin in @ ™.

A spinor field of iype d is by definition a section in
the associated vector bundle Exdﬂf"’ (see Sec. 3). Thus
the problem of defining spinors is reduced to the con-
struction of £.

Remark: The definition of a spin structure has already
been used in mathematics® and general relativity.??®
The definition of a spinor field of type d contains the
usual tensor fields which are obtained for special repre-
sentations d (see Sec. 3). Similar definitions are also
used in modern gauge theories® which deal, of course,
with different structure groups, e.g., SU(2).

2. MORE ABOUT SPIN

We need a more detailed definition of spin, K,, and
p. Following Atiyah ef al.,! let E denote the ordinary
Minkowski vector space with constant metric of signa-
ture + - ~ -, Consider C(E), the corresponding
Clifford algebra, with identity ¢, E is canonically in-
cluded in C{E). Let w denote the canonical antiautomor-
phism of C(E) which leaves every x= E fixed. By defini-
tion, spin is the connected component of the group of
invertible elements g= C(E ), which satisfy

(@) gxg-'=z £ for x= E,

b) g wig)=e.

[The group spin is isomorphic to SL(Q, 2))

The map p: spin — GI(E), defined by p(g)(x) = gxg-!,
for all x< E, is shown to be a homomorphism of spin
onto L with kernel K, consisting of the elements ¢ and
- ¢. Denote by Lie (L.} =~ GI{E) and Lie (spin)~ C(E)
the Lie algebras of L and spin, respectively. p estab-
lishes an isomorphism p,,

Py : Lie (spin) —Lie (L),
such that

polax=ax ~xq
for all xc E and a = Lie (spin).

C(E) has a faithful irreducible representation y in €*,
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Restricting y to spin yields a representation of spin
which we call the Divac vepresentation, Without proof
we state?

Proposition I: There is a Hermitian metric X of signa-
ture + + — — in @* such that y(x) is self-adjoint for all
xcE, X(a,y(x)a) is positive for all positive timelike x
and arbitrary acC? (@ #0). Spin leaves X invariant and
v(a) is skew-adjoint for o = Lie (spin).

3. NONUNIQUENESS OF SPIN STRUCTURES

It has been shown® that a spin structure % exists if and
only if the second Stiefel —Whitney class of M vanishes,
But £ is not uniquely determined (up to trivial bundle
isomorphisms), if H'(M, K) is nontrivial®, Assume that
this is the case. If  is a spin structure, choose a sim-
ple covering U, of M and a system of local sections
§y: U, —E (which exist because U is contractible”). In
UuWy=Uyan U, &,(x) must satisty

(1) =5, (%) 5 (%)

for some function 50{ ot Uy —spin, called the transition
map. In U, =U_nU,NU, we have the identity

B ()P () = G, (%),
When k= H'(M, K,) is nontrivial and is represented by
the cocycle K, .: U, —K,, set (for xe U,,)

5;5('\’) = d;ag(«")KaB-

The functions 5;8 also satisfy (3.1) and it has been
shown®?® that they determine a new inequivalent spin
structure £(K) with a commuting diagram

EK)2E ¢

ﬁ(K)\\ /ﬁ
M

(3.1)

(3.2)

and a system of local sections § (K) with

o0y = M) 0T, (K). (3.3)

The transition maps are given by (3.2). It can be shown
shown®® that this construction establishes a one-to-one

correspondence between the inequivalent spin structures
and the elements of H'(M, K,).

Let d be a representation of spin in € ™. Recall the
definition of &x,C ".° An equivalence relation ~ holds in
Exq

(z,a)>(2’, @) ~— 2"=2g and a =dlg-)a

for some ge spin. Dividing out yields £x,& ™ as the set
of equivalence classes, Denote by d_: Ix €™ — Ex,C ™ the
map which assigns to each pair its equivalence class,

Suppose that d maps K, onto the identity. Then ¢
determines a representation d of L in €™ in the follow-
ing obvious way: Set d(g’) =d(g) for some g with p(g)
=g’. This makes sense because the definition is in-
dependent of the particular choice of g’. One can then
easily show that £x,@ ™ is isomorphic to £x;C™. A
trivial consequence is that any spin structure leads to
identical d-type spinors, when d has the aforementioned
property, which is known to be valid for bosons., The
nonuniqueness of spin structures can, therefore, only
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affect the properties of fermions, a result which is,
of course, expected,

4. CONNECTION FORM AND COVARIANT
DERIVATIVE

In this section we follow the standard differential-
geometrical constructions as they are described in the
books of Greub ¢/ al.® or Kobayashi and Nomizu. 1©

Consider the original frame bundle £, A point z = £
in the fibre over ¥~ M can be visualized as an orienta-
tion preserving isometry of £ to T, the tangent space
over x. The fundamental form ¢ of & with values in E is
defined by [w*: T, ~ T (z ~£) is the mapping induced by
7 in the tangent spaces]|

6.(0,) =1 (")},

forall z= £ and {,= T,. The Riemannian connection
Jorm w of & is uniquely fixed by requiring vanishing
torsion, *°

56+ w 6=0,

From now on we use § to denote the exterior derivative.
If £ is a spin structure, then

@ = ppt (1, w) (4.1)

is a connection form in £. (Notation: ¥ ¢ is any mapping

of manifolds, ¢, denotes the induced pullback of
forms. )

Let U, be a simple covering of M and G, a system of
local sections in Z with transition maps ggaﬂ. Then o,
=103, 185 a system of local sections in § with transition
maps ¢,,(x)=pl$,,(x}]. The local comnection forms @,
and w, defined in U for £ and £ are given by @, =
=0 ,.(@) and w,=0_«(w), respectively. From (4.1) it
follows that

aﬂl:pal(wa)‘ (4.2)
In U,, we have the well-known transition law, *°
B,() = G 4 ()@ ()P 4 () + F (%) 6B ;1 (x),
(4.3)

W (3) =4, (N ()P () + ¢, (). 6T (v).

Recall now that a d-type spinor is a section ¢ in E,\'d(r ",
Let ¢, U, —~ €™ denote the unique function which
satisfies

A, (G (), ¢ () =d(v).
In U, we have the transition law
D) = AU o (1) o (1),

Recall that, conversely, any system of functions
satisfying (4. 4) determines a section. The functions ¢
are called the local components of { with respect to o.
Let Y be a vector field on M, By setting

(4.4)

(V3 9o (1) == ()62, + dlw )i )(x) (4.5)
[i(Y) applied to a form means evaluation of the form by
Y], we obtain, by using (4.3), a new system of functions
satisfying (4. 4) and, therefore, a new section Vi,
called the covariant devivative of ) with respect to Y,

We stop here for a physical comment. Assume that
one wants to describe the quanfum-mechanical motion
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of particles in curved space by a wave equation, such
that the gravitational interaction is mediated by purely
geometrical entities like the covariant derivative. The
formalism described above provides us with a con-
struction principle:

(@) Specify the spin of the particle, i.e., specify the
representation d,

(b) Construct Zx(,(l‘ ™, The “wavefunction” is a section
in this vector bundle.

(c) Then there is a unique and natural definition of the
covariant derivative which depends only on the proper-
ties of the underlying Lorentz manifold.

An analogous construction principle is used in the
differential-geometrical approach to gauge theories, *
in particular in electrodynamics. (Later on we will
couple particles to an electromagnetic vector potential
A which can also be interpreted as a part of a covariant
derivative. )

If (c) is not observed, then we are forced to define
the covariant derivative for each representation d
separately. In physical terms this would be equivalent
to the introduction of new fields of spin-dependent
forces for which we do not have experimental evidence.

5. DIRAC SPINORS

Let » and X be given as in Sec. 2. A Dirvac spinoy is
by definition a section in £x,C*. Define the local Divac
Jorms y by

¥ XY =0 £O)x)). (5.1)
One finds the transition law (valid in U ),
¥4(80) = Fo (Y DT (), oy=7 0 P (5.2)

Now, if Y is a vector field on M and ¥ a section in
Exd([‘ * with local components i, then y(¥)y is defined
as the section with local components given by
G(Y)y,): ¢ (%), (5.2) and (4.4) ensure that this defini-
tion makes sense. For x= 3, lete; (i=1,...,4) be a
set of linearly independent vector fields defined in an
open set containing x. Denote by g*/(x) the matrix in~
verse to g(e,, e,)(x).

The Divac operator is defined by

O = ) (e )., (x).

i,j=1

{5.3)

The right side is independent of the particular choice of

€;

Next, let ¢ and § be two sections with local compo-
nents ¥, and ¢’,, respectively. Using the Proposition I
we find that (for x< Uaa)

X6 (), 9, () = X3, (x), (x).

Thus we can uniquely define a spinov melvic {,) by
setting

Qy P (x) = X o (6), P (%)),

for x< U ,. Two sections ¢, y define a complex-valued
t-form j(y, ¢*) by

i(X) (4, @) =y vV,

(5.4)

(5.5)
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for all vector fields Y on M.

The wavefunction of a particle of spin 1/2 and mass
m is by definition a section ¥ which satisfies the Dirac
equaltion

DY = my. (5. 6)

If the particle is, for example, an electron with charge
e coupled to an electromagnetic field with vector
potential A, then (5. 6) is replaced by the equation

iDy+ ev(A)p=my. (5.7)

If ) and ¢ are solutions of (5.6) or (5.7), then the
divergence of j(#, y’) vanishes.

6. EXOTIC SPINORS

Let £ be a spin structure, U a simple covering of M,
and T, a system of local sections defined on U,. Let
ke H'(M, K,) be nontrivial, represented by the cocycle
kogt Ugg—K,. According to Sec. 3, there is a second
spin structure E(k) with a system of local sections G, (k)
such that

7 o =1(k) & (k). (6.1)
Furthermore, the transition maps satisfy
a;:d:‘saa' R age (6.2)

Now k _.(x) is equal to + e and, therefore, Yk, =21,
because y is a faithful representation of C(E). In order
to simplify the discussion, we assume that there is a
set of functions A : U, —~@, for each o, such that |2l
=1 and

Ao/ X=v (k) (6.3)

in U,,. [Such functions always exist'! if H'(M, Z) has
no torsion. *?] It follows that A} =2 in U,,. Therefore,
the local functions 1 , define a unique unimodular func-
tion :: M —~ C,

() =22, (x), (6.4)

for x& U,. We shall say that %, is generated by a sys-
tem of local square roots A, of A,

We now consider £(k)x,€* and endow it with a co-
variant derivative V* and a spinor metric (,),, accord-
ing to the canonical construction described earlier.
Sections in E(k)xdd“‘ will be indexed by k.

Using (6. 1) one easily finds that the local connection
forms and the local Dirac forms coincide for &, and
(k). Using (6.2) for the local components *of a
section ¢* with respect to &,(%), we find the transition
law

U=y Nylk v () (xe U,). (6.5)

Then it follows from (6. 3) that A . ¢, transforms as the
local component of a section in Zx,L*. Consequently, we
have found a bundle map T: (k)x, 0! — Ex 0" such that
Ty, =2, Pt holds for the local components of each sec-
tion. Using the equality of the local Dirac forms and the
invariance of i, we find immediately

W B, =(TUk, Ty, (6. 6)

I Y *y = 5Ty, Ty, (6.7)
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The only significant change appears in the covariant
derivative; using the equality of the local connection
forms and (6.4), one finds the equation

VTR =TVEY + S (VIA2 8T ¢, (6. 8)

which is valid for all sections ¢* and all vector fields ¥
on M,

The most general bundle map between our two bundles
can always be written as T+ T, where T is a bundle
isomorphism of £x,@? into itself, Assume that:

(a) (6.6) and (6. 7) hold with 7 replaced by T-7,

<d)k9 V;d”k>k:<f°T¢k9 Vyi'on/k), (6'9)

i.e., in quantum-mechanical terms, we require the
physically important matrix elements to be invariant
under the action of ToT.

If such a bundle map would exist, we would obviously
be forced to regard both types of bundles only as differ-
ent mathematical descriptions of the same physical
situation. If such a bundle map does not exist, we say
that the two bundles are physically inequivalent.

Now (6. 6) and (6.7) imply that T¢=X"§ where A’ is a
unimodular complex function. (6.8) and (6.9) yield

AN L=t or B(A'Z/A)=0.

Since A" and X are unimodular, there is a constant uni-
modular complex number C, such that x=(C "),
Therefore, A,/CA'=k,=+1, which implies that y(k,)
=k,/k, Butthenk, isa coboundary and the class %
vanishes, contrary to the original assumption. The two
bundles are, therefore, inequivalent in the physical
sense.

By the same kind of reasoning it can be shown that the
1-form X-16x, which is obviously purely imaginary and
closed, cannot be exact: Assume that X181 =ida for
some real function a. Then X =ixda, which implies
A=) expia, with A,€ @ and i2,1 =1. Then A /A expia
=k,=x1, which leads to y(k,)=k,/k, and implies a
contradiction as shown above.

It is now convenient to introduce the 1-form

B= ——1— ATION

P (6.10)

which is real, closed (but not exact) and, moreover,
defines an integer cohomology class. We sketch the
proof of the last property: Since U, is contractible

(for xe U,) we can write A(x)=exp(27i® (x)) for some
functions ¢ ,: U, ~R. Therefore, B=%0¢,inU,. n U,
we must have exp(2ni®,) = exp(27i®;), which implies
=2, + 2,5 where z,; 18 an integer., Consequently, B
defines an integer cohomology class in the Cech sense,
Using the equivalence of Cech and de Rham cohomolo-
gy, ° we conclude that the integral of B taken along any
closed curve yields an integer.

Let us summarize our results: Starting with a spin
structure £ we found a first type of Dirac spinor  de-
fined as a section in £x, 0% For a nontrivial cocycle
k.» generated by a system of local square roots of 1,
we have found a second, inequivalent spin structure
E(k) and a second type of Dirac spinor y* defined as a
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section in (k)x,0?. There is a canonical definition of

a covariant derivative for both bundles. Now we see
from (6. 7) and (6. 8) that the second type of spinor can
also be represented differently, namely by a section
Ty* =y’ in the original bundle Ex @*. According to (6.8),
the only change required is in the definition of the co-
variant derivative. We formulate this in the following.

Proposition II; Let Ebe a spin structure and let the
nontrivial coeyele &, s be generated by a system of local
square roots of x. In addition to the Dirac spinors ¢,
which are defined as sections in the bundle &x, @9 with
covariant derivative V, we get a second type of Dirac
spinors i’ which can be described by sections in the
same bundle, but with a different formula for the
covariant derivative,

VY =Ty’ - (YN,

valid for all sections ¥’ and vector fields Y. The
spinor-metric (,) and the map (¥, ) —y(¥)y are defined
identically for both kinds of spinors.

(6.11)

7. DISCUSSION OF A SPECIAL EXAMPLE

Let E be the Minkowski space with constant Lorentz
metric g (see Sec. 2). Choose an orthonormal basic e,
(h=1,..., 4), such that gle,, e,)=1, i.e., ¢, is the
time axis. Fix a representation A of C(E) in @¢ by set-
ting y(e,)=v,, where y, is one of the standard sets of
Dirac matrices with y;=v, and y;=~v; (i=1, 2, 3). For
a,beCt, define X(a,b)=a*y,b. We also write X(a, b)
=ab, Then y and A have the properties stated in
Proposition I.

Let us describe points in E by Cartesian coordinates
x* with respect to the basis vectors e, and let E;~ E
denote the subspace orthogonal to e¢;, If x= £, let X de-
note the projection of X onto £,, i.e., x is the space
component of x, Let V,<” £, be an open set with bound-
ary 6V,. Consider the Lorentz manifold V- E, V
=(x= E; X€ V,), with induced metric and orientation.
The tangent space of V is obviously trivial, and so is
the frame bundle £, We have a global section o in ¢
given by the constant vector fields ¢,. The Riemannian
connection form and the fundamental form then satisfy
the well-known formulas

gy- ble)=e,, ox wie,}=0. (.1

We find a first spin structure £ = V' x spin with 5 given
by the map which sends the pair (x, g) into the frame
plg e, (b=1,...,4) at x. Define §: V—£ by d(x)

= (x, e), Obviously, we have 73 ==0. The associated
vector bundle Ex,([.‘4 is trivial, A section is completely
specified by its component ¥, with respect to &. {,:

V —~ @ is a globally defined function. Using (4.1), (4.5),
(5.1), and (5. 4) together with (7.1) we find
immediately:

(Ve, ), = 5;’7 By (7.2)
0

DY)y =y, 57 Vor (7.3)

(e )P)y=7,1,, (7.4)
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(b, ) =95 (7.5)

Pyoposition II[: Let M c E be given by the set V
= (x;x€ V;) where V; denotes a bounded open set with
boundary 6V; in E;, Assume that there is a diffeomor-
phism f: V; —~ R¥x S,

(a) There are only two inequivalent types of Dirac
spinors.

(b) The first type can be described by functions
¥: V—C€* such that (7.2)—(7.5) hold.

(c) The second type of Dirac spinors is described by
functions y’: V —C*, which satisfy (7.4) and (7.5),
while (7.2) and (7. 3) hold with 3/9x* replaced by &/dx*
= 3[x7(8/ax ]

(d) The function x: V — € satisfies |x] =1. It can be

chosen such that (8/9x*)x =0 and div A™6x=0. (div
denotes divergence of a form.)

{(e) Let A be the vector potential of an electromagnetic
field. Solutions of the following two types of Dirac equa-
tions describe particle states of spin 3, mass m, and
charge e,

iDY+ ey A, y=my,

; 5 (7. 6)
DY +y* [eAu -3 (K'l Py ))] W =my’.

Proof: The existence of f implies that HY(V,K,)
=H'(S',K,). But H'(S',K,)=K,, so that (a) and (b) follow
from Sec. 3.

Denote points in S' by complex numbers with modulus
one, Let o:(S'~1)—S! be the square root function
{which is well defined on S'-1). Let f’: V=S be the
map induced by f. Define the open sets U,, U, M by

U= (e M; 0 #1),
Uy,=(xe M; f(x)#-1).

U, and U, form a covering of M which is not simple, but
sufficient for our purpose, since we can always find a
simple refinement. Let ¢:V,—R be an arbitrary func-
tion. Define A;; U, —S! by

M) =a(f (X)) expid,
(7.7)
r(x)=ia(~ f'(x)) expid.

Now U,, =U,N U, is disconnected., The imaginary part
of f/, Imf’, is nonzero on each connected component of
U,,. The function K ,(x) =X, (x)/2,(x) is well defined in
U,, and K, is given by

K (x0)=-Imf'(x)/ |Imf(x) (7.8)

The functions A; are local square roots of the globally
defined function A =f". exp 2i®. Observe that (3/3x)x=0
and A6 =/""l5f" + 276,

By setting

1

: Ix =yt div{f 7o Ny) dy* dy? dy?
3

we ensure that div(A™ 1) =0. (c)—(e) then follow
immediately from Proposition II.
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Remark: The formulas (7. 6) might suggest that ¢ and
Y’ are related by a simple phase factor A’ and an a
appropriate gauge transformation of A such that

MO =4,

But it has been shown quite generally in Sec. 6 that such
a function cannot exist globally. It exists locally, e.g.,
on U,, where we can set A’ equal to A,. The equation
for the product A,. ¥’ is indeed identical with the equa-
tion for ¥ but the product function discontinuously
changes sign at the surface where A is discontinuous;
hence it is nof a well-defined solution of the first dif-
ferential equation.

Proposition I'V: Fix x= IR*. Denote by ¢ :S* —V, the
closed path with c(2)= f}(x, z). Then

S Aten = 2mi, (7.9)

This is also true for any closed path homotopic to c.

Proof: By construction, A satisfies [ A 6x=[_f "5/,
Now f’.c is the identity of S'. Therefore,

Jatoa= [ 2t dz=if " dp =2mi.

The last statement of the proposition follows because
A7 is closed.

8. TWO MODELS FOR SUPERCONDUCTIVITY

Definitions and notations are as in Sec. 7. Suppose
that electrons and photons are confined to the manifold
V by some unspecified mechanism and that V satisfies
the assumption of Proposition III. We have shown that
exactly two types of Dirac spinors exist. If nature is
democratic and does not suppress one of them, these
electrons obviously have a new degree of freedom. This
means that quantum electrodynamics must use two
spinor-field operators ¢ and ¢’ together with the photon-
field operator A. The equations of motion are then
supplied by (7. 6):

iDp+ey A, p=mi,
iDY +ey*(A -B), Y =my,

i .. 0
B“z’ZTA 16x“

(8.1)

A,

The current operator is given by
L=y + 3@y, 0) e

This expression is fixed by (8.1) and the requirement
that the divergence of / vanishes. A mixed contribution
of ¥ and ¢’ to I is not compatible with both conditions.
A contribution with different weights contradicts the
assumption that y and ¢’ are associated to the same
charge.

A satisfies

DA=I, divA=0. (8.2)

We require that ¢, ¥’ and F =84 have support in V and
that the canonical equal-time commutation relations
hold.

By support we mean that suitable boundary conditions
are imposed at 5V,. These are not easily formulated for
Dirac spinors. In principle, (8.1) should, therefore,
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be reduced to the nonrelativistic Pauli equation, where
the conventional boundary conditions can be applied.

A nonrelativistic reduction would also be more in line
with the conventional treatment of superconductivity but
it is omitted here because it does not affect our main
conclusions (see also Sec. 13).

Parallel to the discussion of this model, we consider
quantum electrodynamics with a boson field ¢ of charge
2e and mass m’. & obeys the well-known equation??

0 0
g‘“’(i Pywn +2€Au> GW +2€Av><l>:m’2<b. (8. 3)

$ has again support in V, the equal-time commutation
relations are canonical, and the current is given this
time by

N - .
I,=2e?® <L Fy + 2eAu) ¢ + Hermitian conjugate.

The well-known difficulties with the subsidiary condition
divA = 0 do not concern us here. We assume that they
are solved either by the use of an indefinite Hilbert
space metric or by working in the radiation gauge.

Let us define
TWy=¢ T@Y=y,
T(®)=®x, T(A)=A ~B,

(8.4)

The equations (8.1)—(8. 3) are invariant under the
transformation y — T'(y) etc., Moreover, the equal-time
commutation relations are invariant. We assume that
there is an operator T in the Hilbert space H, in which
the field operators act, such that 7 is unitary and
commutes with the Hamiltonian % of the system. T
satisfies Ty T =T(y), etc.; i.e., the formal symmetry

(8.4) is unitarily implemented by T. It follows that
TI,T"=I,. (8.5)

Let ¢ be a path as in Proposition IV. Consider the
operator

ol c)=2e [ A(x,=t,x)dx".

$(t, ¢) is just the operator of the flux, times 2¢, through
a surface in E bounded by c.

Let ¢ be a fixed eigenvalue of the charge operator Q.
Consider the subspace P of H, which is spanned by
simultaneous eigenstates of @ (with eigenvalue ¢) and of
h, with lowest possible eigenvalue E(g). Denote the
projection operator on P by P and set

AP(x)= PA(x)P, IP(x)=PI(x)P, ¢"(c)=Polt,c)P.

»F(c), AF(x), and I¥(X) are independent of time (i.e., of
x,), since states in P have the same energy. This justi-
fies our notation,

We now make the assumption of
(a) rigidity: PA(1 -~ P)=0.

Assumption {a) implies that for every state |a)c P

A,y =Al(x)|a)e P, (8.6)
It follows from (8. 2) that
L(®) la) =IZ(x)|a)e P. (8.7)
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Using (a) together with the equal-time commutation
relations, one finds

(A5, L)) =[4x), L ®)].=0.

The equal-time commutator of A, and (2/0x*)A, is
nonzero. On the other hand, a short calculation shows
that (8. 6) implies that this commutator vanishes,
Therefore, assumption (a) can only be regarded as a
more or less correct approximation. It means that
quantum fluctuations in the photon field are totally
neglected. The field behaves, therefore, like a (state-
dependent) classical function. (8.6) implies now, in
particular, that

o, o)) =¢7(c) |a) & P,

Next we make the assumption of

(8.8)

(8.9)

(b) simplicity: For each ¢ R there is one and only
one eigenstate | ¢)= P of ¢(c) with eigenvalue ¢. The
states | ¢) are normalized according to (¢’| ¢)
=0(¢’ - ¢) and span P.

(c) We also require the Meissner effect, according
to which

P P
2.0 _ AW o i=1,2,9)
0x; ax;

for x sufficiently far from the boundary of V,. With the
help of these assumptions we now prove

Proposition V: (1) |¢)
eigenvalue ¢.

is an eigenstate of ¢(t, ¢) with

(2) If ¢, ¢’ are sufficiently far from the boundary of
V, and ¢’ is homotopic to ¢, then ¢{/,¢’) |$)=¢|P).

(3) |¢) is an eigenstate of I,(x) and A, (x), with
time-independent eigenvalues I, (X, ¢) and A4, (x, ¢),
respectively.

(4) 1,x),0)=1,(x, ¢ =2m), A,(x,0)=A,(x,0-2r)+B,.
Proof: (1) follows directly from (8.9).

(2) follows from assumption (¢) and Stokes’ theorem.
From (8.8) and (8. 9) we conclude that

[¢P(e), IZ(x)].=[9"(c), AE(x)].=0. (8.10)

Therefore, (¢/|1,(x)|¢ =(¢'|A,X) | =0if ¢’ #o.
Consequently,

<¢’ ] Iu(x) ‘ ¢> :Iu(x) ¢)6(¢’ - (:)),
(8.11)

(@' | A(X) ) =A,(x, $)o(d' - ),
for some real functions A, (x, ¢) and /,(x, ¢).

(3) follows immediately from (8. 6) and agsumption

(b).

(4) is the consequence of the existence of the unitary
operator 7. Because T commutes with the Hamiltonian
and the charge operator, it must leave P invariant,
i.e.,

TPT =P,
(8.4) and (8. 5) imply that

THUPX)T =15(x), T ANXT =Af(x)+B,P. (8.12)
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From Proposition IV it follows that
T $P(c)T = pF(c) - 27P
and, consequently,
"()T | ¢y = T(¢P(c) - 2m)| $) = (¢ - 2m)T | $).

Now T(¢)cP and, therefore, we conclude, from our
assumption of simplicity, that

T]¢)=|¢—2m. (8.13)

If we insert (8.12) in (8. 11) and use (8.13), we imme-
diately verify the last point of the proposition.

9. FURTHER DEVELOPMENTS

After this exposition of the mathematical details of
our two models, we wish to establish their connection
to the theory of superconductivity. We use Schrieffer’s
book as a reference for the work which has been done in
this field,

Consider a massive ring of superconducting metal.
The topology of the ring is equal to the topology of V,.
The only objects which can move inside the ring are
the photons and the conducting electrons. We conclude
that the low-lying states in the ring can be well de-
scribed by a quantum-field theory which uses only
electron and photon field operators. The ions of the
metal are heavy particles which remain to a high degree
of accuracy at a fixed average position. Their presence
serves to keep the electrons inside the metal by main-
taining an average electric potential. We incorporate
this in our models by requiring that the electron-field
operators have support in V,. (More sophisticated
models will, of course, take lattice vibrations into
account. ) The standard assumption of superconductivity
is that electrons form spinless pairs with charge 2e.
This corresponds to our boson model. In addition, we
consider a model in which electrons make use of the
second type of Dirac spinors, which is provided by the
nontrivial topology of the ring, as we have shown.
Because H'(E, K,) vanishes, this second type of Dirac
spinor cannot exist on the whole of Minkowski spaee E,
Strictly speaking, this second type of Dirac spinors is
the result of the approximation that electrons are com-
pletely confined to the ring.

In addition, we made the assumption that photons are
also confined to the ring. This is an approximation
which has to be improved, because the electrons will
always create an electromagnetic field outside of the
ring. The assumptions of rigidity and simplicity are
then purely technical means for providing the proof of
Proposition V.

Rigidity can be somewhat justified by the experimen-
tal fact that low-frequency radiation is not absorbed by
superconductors.** The assumption of the Meissner
effect uses the experimental result that magnetic fields
do not exist in superconductors.?

Now recall Proposition V: We have found that the
state of lowest energy for a definite charge is degen-
erate to within our approximations. The eigenstates
| ¢y of flux (times 2¢) provide a basis for the eigenspace
of lowest energy. | ¢) is also an eigenstate of current
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and vector potential with eigenvalues /,(x, ) and

A ,(x, ¢). We have already mentioned that this descrip-
tion is incomplete, since we have neglected the elec-
tromagnetic field outside the ring. We now try to im-
prove our models by extending A, (x, ¢) to the exterior
of the ring. More precisely, we postulate the existence
of a field A, (X, ¢) which coincides with A ,(X, ¢) inside
of the ring. It is then natural to assume that at large
distances from the ring: (1) A, vanishes, because the
electrostatic potential is completely shielded by the
charges of the ions, and (2) that A (x, ¢) (=1, 2, 3)
approximates the classical expression given by Biot—
Savart’s law,

A, 0)= 1., (x=y| 105, ). ©.1)
We cannot postulate such a formula in the intermediate
region, but we know experimentally that the extension
of this region is given by the London penetration depth,
which is very small.?

The external field makes a contribution AE(¢) to the
total energy of the state | ¢), namely half of the square
of the magnetic field integrated over the external space.
If we neglect the contribution of the transition region
this additional energy can be simply computed from
(9.1). We know that J;(x, ¢) is periodic in ¢ with period
27. It follows that AE(¢) is also periodic. The degen-
eracy in energy is, therefore, partially but not com-
pletely removed by AE(¢$). If AE has an absolute mini-
mum at ¢,, then there are other such minima at
¢,+ k. 27. For obvious physical reasons, we would
expect among those lowest-lying states there is one
which carriers no current, no magnetic field, and no
flux. This means that AE(0) is among the minima and,
consequently, the states of lowest energy are given by
the states |27k).

With the assumptions quoted above we now prove

Proposition VI: Let ¢ be a path which lies sufficiently
deep inside the ring and assume that ¢ has the proper-
ties stated in Proposition IV, If the ring is in a state of
lowest energy, then the magnetic flux through any 2-
surface bounded by ¢ is equal to k7/e with integer k., If
¢’ is another such path which is homotopic to ¢ in V,,
then the flux has the same value as for c.

Remark: The last point makes it possible to speak
simply of the flux through the ring.

Pyoof: Let the ring be in state | ¢). The magnetic
flux can be directly expressed as the line integral of
Alx, ¢) over c. ﬁi(x, ¢) equals A,(x, ¢)in V, and the
line integral is equal to ¢/2¢ as a consequence of
Proposition V, which also guaraniees the same result
for ¢’ homotopic to ¢. As we have shown before, ¢
equals 27k with integer . in the states of lowest energy.
This proves the proposition.

10. JUNCTIONS

We now turn tothe discussion of junctions. A good
survey of the existing theoretical and experimental work
in this field has been presented in Waldram’s recent
review article. !> Experimentally, a junction is prepared
by inserting a thin insulating layer in a superconductor.
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We represent this mathematically by an electric poten-
tial with a discontinuity at a surface which divides the
superconducting ring. The absolute value of the discon-
tinuity can be varied with the help of an external voltage
source in parallel with the junction. We first discuss
the geometrical aspects of this arrangement. For the
following we need some topological notions. Notation
and definitions are as in Secs. 7 and 8.

A 2-surface F in V, is called simple if there is a
diffeomorphism of V,~F onto R® and if F N ¢ consists
of a single point, A path ¢’ is called simply homotopic
to c if it is homotopic to ¢ in V, and if ¢'N F consists
of single point,

A Josephson junction consists of a simpie surface F
and a real function p (defined on V,~ F), which has a
constant discontinuity p, at F.

A double junction consists of two surfaces F and F’
which are both simple and do not intersect, together
with a real function p (defined on V, ~F -~ F'), which
has a constant discontinuity y, at F and ~ 1, at F’,

Recall that V, can be visualized as a ring., We see
that in the case of the Josephson junction, F just cuts
the ring. In the case of the double junction, F and F’
cut the ring into two pieces. [, may be time-dependent
in both cases. We call E, = — (9/2x") (i=1, 2, 3) the
electric field of the junction. Let B(t) be a magnetic
field on E, which vanishes in V,. (we use implicitly the
Meissner effect again here.) The external flux & _(t, ¢)
through V, is defined by

,(l, )= [;Bdf,
where F is any surface bounded by c,

Proposition VII: (a) ®,,(¢t, c) is independent of the
particular choice of the surface F.

{(b) @,,(t, c)=2,.(¢, ¢’) if ¢’ is homotopic to ¢ inside V,.
(c) For the Josephson junction
Joduw=]  du=u,
if ¢’ is simply homotopic to ¢ with respect to F.
(d) For the double junction
J du=], du=0
if ¢’ is simply homotopic to F and F’,
Proof; (a) follows from divB =0 and Stokes’ theorem.

(b) follows from B=0 in V,. (c) For any path ¢’ with
¢’n F equal to a point, we have [ du==p,. The sign
depends on the orientation of the path. The sign is +,
if ¢’ is homotopic to ¢, This proves (¢). (d) is true for
every path which meets F and F” only once,

Next we consider the effect of a junction for the
two models of quantum electrodynamics discussed in
the last section. The total flux &, (¢, ¢) is the sum of the
externally-applied flux and (1/2e)¢(f, ¢) (note that ¢ was
defined as flux times 2¢). Assume that p(t) and B(t)
vanish for £ <0, Let P have the superconducting proper-
ties (a)—(c). Proposition V applies for negative time.
For positive time, the system interacts with the exter-
nal fields of the junction which transfer energy into it.
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We assume that this energy is largely removed by some
unspecified cooling mechanism. Let U(!) denote the
time-evolution operator of the system. U(f) is unitary
and satisfies U(0)=1, If a state was in P at time less
than zero, it will remain in P, since energy and charge
are not transferred. In particular, U(t)| ¢) is contained
in P for all time.

We now make the assumption of

junction dominance: The contribution of the internal
electric field to the time derivative of the total flux is
small compared to the contribution of the junction field.

Maxwell’s equations in integral form yield
immediately

d ;
—d—t-qyto([, c):—j;Ei(t)dx‘ (10.1)
which is easily integrated and yields
¢(t’ C) = (P(O, C) - )\(t) ’ (10' 2)

ME) =2e[@,, (¢, ) — (0, 0) + fot fCE,-(T) dxtdr].
With the help of the time-evolution operator we write
o(t, ) =U(H) $(0, ) U*(D).
With the help of (10.2) we find

6(0, YUY ¢ =U(MB(O, &) | ) ~MDUWN | ). (10.3)

Now ¢(0, ¢)l ¢) = ¢| ¢) as a result of Proposition V, and
U(H! ¢» c P. The assumption of simplicity yields

U] 8= [ +1(t).

Evidently U*(t) ¢) = | ¢ = A({).

Using I, (t, x)=U(H)I (0, x)U*(t) and Proposition V again,
we find immediately

L(t, %) | ¢) =U) 1,0, x)| & ~ M)
=1,(x, ¢ ~MD) | D).

We stop here for a short remark. Only the last
formula is important for us. We can also derive it under
a less stringent condition, namely that (10.1) is valid
only when applied to states in P. The proof of (10.5)

follows when we observe that U(t)?U(t)':P, where P
is the projection operator on P,

(10.4)

(10.5)

Proposition VIII: Let the system be in an eigenstate
of charge with lowest possible energy. Let ¢ be a path
sufficiently far from the boundary of V, and let rigidity,
simplicity, Meissner effect, and junction dominance
be valid. The electric current is given by the function
I1,(x,¢ —2()) (the Josephson current) where 0< ¢ <27
and:

(a) I, is a periodic function of ¢ — A(f) with period 2.
[N

(b) MH) =2e[~ py(t) + & ,,(L, ¢) ~ &,,(0, )] for the
Josephson junction and

(€) M(t)=2e[®,,({, c) = P (0, ¢)] for the double junction.

(d) These formulas are also valid if ¢’ is homotopic
to c.

Proof: (a) is just formula (10.5).
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(b) and (c) follow from the definition of A(¢) given by
(10. 2) and Proposition VII,

{d) follows from the Propositions V and VII.

Formula (c) needs some discussion. It does not con-
tain the electric field of the junction. This could lead
to the conclusion that even when the junction field
vanishes, we still get a current which varies with the
external flux, i.e., we get a change in our system which
is confined to V, by a magnetic field which vanishes in
V,.

This conclusion is wrong, since the derivation of our
result is only correct under the assumption of junction
dominance, which is not valid when the electric field
of the junction vanishes. Junction dominance and vanish-
ing junction field are just two limiting cases. In the
latter case we can safely assume that the dynamics of
the interior of V, are completely independent of the
external magnetic field.

11. EXOTIC SPINORS VERSUS ELECTRON PAIRS

We discuss now the results which we have obtained in
the last section, With the assumptions of Meissner
effect, rigidity, simplicity, and junction dominance,
we have derived the correct expressions for flux quanti-
zation and Josephson current. They are given by Propo-
sition IV and VIII. Note that we obtain the Josephson
current as a general periodic function of A, This is in
complete agreement with the experimental facts.'® Our
derivation yields identical results for two types of
models: electrodynamics with exotic spinors of charge
e and electrodynamics with bosons of charge 2e, i.e.,
electron pairs. For a single Dirac field we would only
obtain the original result of London with a factor 2
missing. '* Note that we take the Meissner effect for
granted, i.e., we do not explain every special feature
in superconductivity, but use some of them to obtain
our result. We cannot insure a priovi that our models
indeed satisfy all the additional assumptions which were
made. Perhaps one has to allow for other interactions
(e.g., with the phononfield) which insure that these
assumptions are actually valid. This will not effect our
conclusions as long as the operator 7 defined in Sec. 8
still defines a unitary transformation which leaves the
equations of motion invariant.

The fact that we used relativistic quantum field theory
does not mean that Josephson current, and flux quanti-
zation are of relativistic origin. In fact, the theory can
also be developed in a nonrelativistic setting with
Pauli spinors, but these would require a different
mathematical formalism, since the relevant principal
bundles have a different group. We mention here that
the classification of different spin structures in the
nonrelativistic case yields the same results as the
relativistic case which we have described. We have al-
so considered a boson field of charge 2¢, i.e., electron
pairs, in order to facilitate the comparison with the
conventional theory of superconductivity. !° Our deriva-
tion of flux quantization and Josephson current is quite
new in itself, so we wanted to check that it also works
for electron pairs. As we have mentioned, electron
pairs and exotic spinors yield identical results.
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Measurements of the Josephson current which con-
tains the factor 2¢ in a characteristic manner, are so
precise that they are even used as the best experiment-
al determination of e. The pairing hypothesis is, there-
fore, regarded as one of the best established theories in
physics. On the other hand, it is clearly an approxima-
tion with limited applicability, e.g., it predicts a wrong
behavior of the Knight shift.'* The question arises why
the predicted charge dependence of magnetic flux and
Josephson current is experimentally verified to such an
astonishing degree of accuracy. By relating the charge
dependence to an invariant topological property of the
whole macroscopic superconductor, our model with
exotic spinors yields a natural answer to this question.
On the other hand, the physical origin of exotic spinors
is obscure. At the moment I can only offer the specula-
tion that when the theory of superconductivity is formu-
lated with the help of the Bogolyubov—Valatin transfor-
mation, it might happen that the two types of spinors
emerge as quasiparticles for two different vacuum sol-
utions of the Hartree— Bogolyubov equations. The work
of Byers and Yang, '® Bohr and Mottelson, '” and especi-
ally of Uhlenbrock and Zumino'® shows that such solu-
tions indeed exist, Moreover, it is known that the
Bogolyubov transformation even yields an exact solution
in certain models, These models'® are characterized by
the appearance of inequivalent representations of the
fermion anticommutation relations, which do not have a
well-defined number operator so that gauge invariance
of the first kind cannot be unitarily implemented. I do
not think that the last point is relevant for the present
problem, but also these models show that the appear-
ance of different types of quasiparticles is not all un-
familiar to the standard theory of superconductivity.

Up to now I have not been able to combine these results
with my own geometrical considerations, though I see
the necessity of such a connection, since the standard
theory of superconductivity not only explains the effects
mentioned in this paper, but also a lot of other phenom-
ena.

Instead I have made a step backwards to phenomeno-
logy and have presented here a model in which the con-
sequences of the geometrical facts can be easily demon-
strated.

We must still say some words about our derivation of
the current in the Josephson junction. In contrast to the
conventional derivation, we decisively used that the
current flows in a closed circuit. The shape of the cir-
cuit may be quite arbitrary, as we have shown. It may
contain a device for applying the discontinuous voltage
step at the junction {(which is produced by a thin insulat-
ing layer'®) and even an instrument for measuring the
current. All this will not invalidate our conclusions, as
we have seen, because the topology is always that of the
ring. We must, of course, assume that the instrument
used for measurements does not affect the supercon-
ducting properties of the whole system too much. The
question now arises what happens when the geometry of
the system is more complicated. The answer is that in
such a case even more exotic spinors are possible, but
by a more careful investigation which is beyond the
scope of this article one can show that the predictions
for flux and current are unchanged. [The reader who
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wants to check this must note that (1/27{)A"25) always
defines an integer cohomology class for the character-
istic function X (compare Sec. 6). |

CONCLUSION

Exotic spinors always appear when the underlying
manifold is not simply connected. Several beautiful
solutions of Einstein’s equations yield manifolds with
this property.?® The most prominent one is perhaps the
Kerr solution with a ring singularity. In practically all
solutions of Einstein’s equations, the underlying mani-
fold turns out to be parallelizable, * This provides us
immediately with a first trivial spin-structure. The
situation is in this respect not very different from our
simple example, One then is readily inclined to reject
the other nontrivial spin structures as somewhat arti-
ficial objects. Hopefully, our application to supercon-
ductivity has convinced the reader that this attitude is
premature. A manifold which is not simply connected
also appears in the discussion of the Bohm-— Aharonov
effect.?! The mathematical results of Secs. 1~ 6 have
been derived in such a way that they can be applied to
all these cases.
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We show by simple rearrangements of the Lippmann-Schwinger equation, that the propagator (Green’s
function) of a linear physical field can be expanded in power series valid for values of the coupling
constant either close to unity or very large. The new series satisfy the generalized resolvent operator

equation first derived by Mockel.

I. INTRODUCTION AND REVIEW OF SOME RESULTS

The propagator (or Green’s function) plays a central
role in the mathematical description of a physical field.
In most instances, only approximate expressions for the
propagator can be obtained for the case of small de-
partures from an exactly solvable physical situation,
This results in the representation of the propagator as
a power series in terms of the strength (coupling con-
stant) of the interaction, This series is usually referred
to as the Neumann expansion, as it arises from the
iteration of the integral equation defining the propagator,
In what follows, we would like to show that from the
approximate knowledge of the propagator for values of
the strength constant either equal to unity, or very
large, one can derive two new series for the propagator,
which we shall call the second and third Neumann series.
This procedure will be illustrated for quantum mechani-
cal systems, although it applies as well to any linear
physical field.

Consider a quantum mechanical system represented
by the Schrodinger equation,

(FI- H)b =0, I.1)

where F is the energy of the system, [/ is the unit opera-
tor, and the Hamiltonian operator # is given in the form

(I.2)

with € representing the interaction coupling constant,
The unperturbed Hamiltonian is ¥, and the perturbation
operator H; is written as

H=H,+cH,,

Hi=Fp+ 1Hy, (L. 3)

where we have split the interaction into a “diagonal”
operator H, and a nondiagonal operator ¥y, The per-
turbation parameter 7 (0 < 7<1) turns the nondiagonal
interaction #, “on” and serves as a convenient device
to keep track of the order of the perturbation.

The following restrictions are imposed on the other-
wise arbitrary operators H and F:

(2) The operators H,, H,, and H, are compact opera-
tors of the Hilbert—Schmidt class, i.e,,

trace(4A4') < «, (1 4)

2)Sponsored by the Department of Energy Office of Energy
Technology, Reactor Research and Technology Division,
Reactor Design, under contract with the Union Carbide
Corporation,

241 J. Math. Phys. 20(2), February 1979

0022-2488/79/020241-04$01.00

where A is any of the above operators and 4’ is its
adjoint.

(b) The inverse of the diagonal operator H,, i.e.,
H7, exists as a bounded operator,

We also state without proof the following theorem, !

Theorem 1: The product of a compact operator and a
bounded operator is also compact.

The full propagator G is defined by the relation

(EI- ()G =1, (1.5)
which for the unperturbed case becomes
(EI- Hy)Gy =1, (I. 6)

The full and the unperturbed propagators are related by
the Lippmann—Schwinger equation?

G=Gy+¢GH,G,. L.7)

Let B[(7), ()] be an operator, which is an analytical
function of a set of parameters (n;), aud which is
associated with a set (\) of eigenvalues, We define its
resolvent Ry{(r), B[(A), ()]} by

RgB=1I (1. 8)
for any
{x}en(B), (.9)

where p(R) is the resolvent set of B, It can be shown
that the operator R satisfies the generalized resolvent
equation®

) 5
—R Y=—= Rg( [——B }R 1.10
on, s sy 5111 m)|Ra(m;) ( )
together with the reciprocity relation
RB(X,X', ﬂf)ZRE(x':X, 771)- (I- 11)

From the comparison of Eqs. (I.5) and (I. 8), we con-
clude that the propagator itself satisfies the following
generalized resolvent equation,
8 . 9 s
—550(71{)=—G(m);m—l[E(m)I—H(m)] G(n,). (1.12)

In particular, identification of the parameter n; with the
coupling constant ¢ yields

= GO = COer 166, (1.13)

which together with the initial condition
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GlE=0)=G, (I 14)

defines the propagator G().

The Lippmann—Schwinger equation (1. 7) and the
generalized resolvent equation (L. 13) are equivalent,
Iteration of the former yields the first Neumann series,

G= 2 GyleH,Gy)", (1.15)
n=(
Identical results are obtained from the Taylor series
expansion,

., €876
55
€=(

n;ﬁn! O™

(1. 16)

where the derivatives, |6 ™G/8"|, are computed from
Eq, (I, 13) and the initial condition Eq. (I, 14), The
series, Eq. (I.15), converges when

”6(H1Go)”<1, (1. 17)

which implies that the operator H,G, must be a compact
operator. The interaction operator H, is compact by de-
finition; hence, according to Theorem 1, G, must be a
bounded operator.

We conclude the introductory material by pointing out
that partial summation? of this series, Eq. (I, 15),
yields the more convergent result

G=23Gp(eHyGp)"

na0

(1.18)

in terms of the “diagonal” propagator

Gp=Gy(I—eH,Gy)t, (1.19)
A result which can be also arrived at (see Appendix A)
by trivial rearrangement of the Lippmann-—Schwinger
equation (I.7) or from the generalized resolvent equa
tion (I.13). Various techniques®™" have been developed
in the past to improve on the convergence of the
Neumann series (I.15) by suitable rearrangements of
this series. Wellner® accomplishes the rearrangement
of the series (I.15) by expansion of the coupling constant
in power series of an auxiliary parameter ». Rotenberg®
introduces two new operators in place of the identity
operator I and the operator H,G, in Eq. (A9). Finally,
Weinberg’ utilizes a conformal mapping of the coupling-~
constant plane to rearrange the Neumann series (I, 15).
The present method is based on the rearrangement of
the Lippmann—Schwinger equation (I, 7) itself, instead
of its iterated form (I.15),

In essence, the method developed here exploits the
well-known algebraic analogy between the operator
(7-€eH{Gy)™!, and its expansion (I, 15), and the expansion
of the function (1 - X)", where X is a number real or
complex,

1l. THE “SECOND” NEUMANN SERIES EXPANSION
OF THE PROPAGATOR

The purpose of this section is to construct and discuss
a series expansion for the propagator for values of the
coupling constant, ¢, close to unity, To this end we
rearrange the Lippmann— Schwinger equation (I,7) in
the form
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I1=G"1Gy+ €H,G,, (. 1)

which after adding and subtracting the operator H,G,
becomes

I1=G"Gy+ (e~ 1)H,G, + H,G,. (1. 2)
Next, from Eq, (I.7) evaluated at e=1, we obtain

G(1) = Gyl - H;Gy)™, (I 3)
which can be solved for H,G,, i.e.,

H,Gy=I- G (1)G,. (L 4)

Introduction of Eq,. (I 4) into Eq, (1. 2), yields after
trivial rearrangements the result

GE)=GA)I~(e-1)Q4)!
with
Q=H,G(1),

(11, 5)

(1L, 6)

Iteration of Eq. (II. 5) yields the “second” Neumann
series

G()=2: G - 1)@y " (IL7)
The convergence of the above series depends on the
condition

” (6 - 1)H1G(l)“ <11

which in turn demands that the operator H,G(1) be a
compact operator of the Hilbert—Schmidt class., The
interaction operator H; is by definition a compact
operator, hence the propagator G(1) must be bounded
(see Appendix A), The propagator G(1) is obtained from
Eq. (A7) evaluated at e=1, The result is

(IL 8)

G(1) =2 GoW)[7TH G D] (L. 9)
with the condition for convergence
ITHG (Wl <1, (IL. 10)

which implies that the “diagonal” propagator G ;!
(evaluated at ¢ =1) must be bounded.

The second Neumann series, i.e., Eq, (I.7), must
also satisfy the generalized resolvent equation (I,13),
To prove this point it suffices to introduce the series
Eq. (I1.7) into Eq. (I.13). One obtains

8

4 (m.11)

n(e - 1)™1G)QY

i
LAY

=3 b €~ 1)"’"'-1G(1)Q1("’""'1),
nal o' 20
an expression which after equating the coefficients of
equal powers in the quantity ¢ — 1 becomes a set of
identities,

1. THE THIRD NEUMANN SERIES EXPANSION
OF THE PROPAGATOR

In this section we discuss a series expansion of the
propagator for large values of the coupling constant
> 1), To this end we introduce the “strong coupling
operator,” @,, defined by

Q=G HL, (Im. 1)
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On the basis of this operator the Lippmann—Schwinger
equation (L 7) is rewritten in the form

(Im. 2)

Left multiplication of Eq. (I 2) by the @, operator
yields, after some rearrangement, the result

G=-€1G,Q, (I~ 1Q,)t,

which leads to the following series expansion for the
propagator,

G =G,y +eGQ3,

(1, 3)

G=—2,€"Q5. (1, 4)
nal

The convergence of the series (III. 3) depends on the

condition

let@qll<1,

the fulfillment of which requires that the @, operator
must be a compact operator of the Hilbert—Schmidt
class, We shall now examine the condition

el <,

where M is a finite limit, From the definition
[Eq. (III.1)], of the strong coupling operator §,, re-
written in the form

QZ(HXGO) :I;

we immediately realize that this operator is the
resolvent of the assumedly compact operator H;Gy. It
should then satisfy the generalized resolvent equation
(1.10), i.e.,

(In, 5)
(I, 6)

(1L, 7)

) ) .
5792 == Qz[O—TH1('o]Q2, (Im. 8)
where the arbitrary parameter 7n; has been replaced by
the perturbation parameter 7. Introduction of Eq. (I.3)
into Eq. (III, 8) yields

o]

T Qg = = @y {HyG)Qy, (11, 9)
with the initial condition

Q2 (7=0)=@Q,, (111, 10)

where the initial value of the strong coupling operator
is obtained by setting 7=0 in Eq, (IIL1), i.e.,

Qo =H;1G;\. (Im. 11)

We can now proceed on the evaluation of @, by expansion
in Taylor series around 7=0, We have

= v
Qz(T) :Z‘l _I:dj. Q(T):l 1-0’

S (I, 12)

where the derivatives in Eq. (III. 12) are computed from
the generalized resolvent equation (Ilf. 3), The result is

Q(7)=Q,P(7), (1L, 13)
where the operator P(7) is given by
P(1) =73 (- 'X" (ITL. 14)
Pa
with
X=HyH. (T1L, 15)

Whenever the operator Hy;! exists as a bounded operator
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the operator X will be compact in view of the compact-
ness of Hy. From Theorem 1, P will be in turn compact.
Also, if

71X1<1, (IIL. 16)
the series (I1I, 14) will converge with
”P“ <‘Mp) (HI. 17)

where M, is the bound of the norm 1P}, Calling Mg, the
bound of 11Q,!l, we have from Eq. (II. 13) and the
Schwartz inequality the result

QI <M, Mo, (1m.18)

from which we conclude that the strong coupling opera-
tor @, is compact and bounded when Q! is bounded and
the condition Eq, (IIL. 16) is satisfied,

The third Neumann series, Eq. (III. 4) must also
satisfy the generalized resolvent equation (I. 13). This
is easily proven by inserting the expansion Eq, (III, 4)
into Eq. (I.13). We obtain

6-1(;0’?_/; n{e1Q,)"

=Gy 23 €& “QI(H;G)QF (1L 19)

nan'a
which, after equating coefficients of equal powers in the
inverse coupling constant ¢”! and on account of Eq,
(I, 7), becomes a set of identities,

Finally because the strong coupling operator @,
satisfies the generalized resolvent equation, it must
also satisfy a reciprocity relation similar to Eq, (I, 11),

IV. CONCLUSIONS AND DISCUSSION

We have constructed, by means of simple rearrange-
ments of the Lippmann—Schwinger equation, two new
series for the propagator, The so-called second Neu-
mann series, Eq. (II.7), is a power series in {¢~ 1),
The convergence of this series depends on the existence
of the propagator, G{e=1)=G(l), given by Eq, (IL, 9).
The third Neumann series is an expansion in terms of
the inverse powers of the coupling constant Eq. (III, 4),
where the strong coupling operator @, is given by
Eq. (IIL. 13).

The leading term in this series is from Eqs, (III, 1)
and (I, 4),

Gle) =~ (eHy)™, (Iv.1)
which coincides with the results of taking the limit of
the expression (A, 9) for the propagator in the case of
large values of the coupling constant,

The three Neumann series satisfy both the Lippmann—
Schwinger equation and the generalized resolvent equa-
tion, and in this sense they might be considered as
analytical continuations of each other,

We have also studied the conditions required for @
and ¢, to be operators of the Hilbert—Schmidt class,
Both operators are expressed as a power series in the
perturbation parameter 7, which switches “on” the
nondiagonal part of the interaction of the Hamiltonian,
In consequence, the second and third Neumann series
are in fact double series expansions,
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In a forthcoming paper we show that the two series
obtained by rearrangement of the Lippmann—Schwinger
equation can also be thought of as the analytical con-
tinuation of a functional hypergeometric function by
composition, first studied by Volterra®? in connection
with the Neumann series solution of integral equations,

APPENDIX A. EXPANSION OF THE PROPAGATOR
IN TERMS OF THE “OFF-DIAGONAL" MATRIX
ELEMENTS OF THE INTERACTION OPERATOR

In this Appendix we illustrate the use of the general-
ized resolvent equation (I. 10) to obtain a perturbation
expansion of the propagator in terms of the “off-diago-
nal” matrix elements of the interaction operator. To
this end we identify the arbitrary parameter n; with the
parameter 7, and write

B(7)=EI- H(7),
Rg(1) =G(7).

Introduction of Egs. (Al),
yields

(A1)
(A2)

(I.2), and (L. 3) into Eq, (I.10)

2 G(1) =G(NHy G, (a3)
which is in the coordinates representation an integro-
differential equation for the propagator, subject to the
initial condition

G(r=0)=Gp, (A4)

where the “diagonal” propagator G, is obtained from the
Lippmann—Schwinger equation (I. 7) evaluated at 7=0,

We then have
Gp=Gy(I - eHpGy)™, (A5)

so that we can express the propagator G(7) in the form
of the Taylor series expansion

G(n)= oyl

Zle) o o
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where the successive derivatives of the Green’s function
are computed from Eq. (A3). We obtain in this manner

G(7) :Z‘g Gp(1eHyG,)", (A7)
nal

which is a convergent series expansion for the propaga-

tor provided that

e HyGpll <1, (A8)

which implies that the operator (HyGp) must be a com-
pact operator of the Hilbert-Schmidt class, Hence, G,
must be a bounded operator, in view of Theorem 1 and
since by definition Hy is a compact operator,

The result (A7) is also obtained from the Lippmann—
Schwinger equation (I.7), rewritten in the form

G =Gyl - eH,Gy)™, (A9)
which in view of Eq. (I.3) can be rearranged as
G =Gy[(I - eHyGy) - €THYG, T, (A10)

so that expansion in terms of the nondiagonal matrix
operation, HyG;, yields again the result (A7),
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Conformal flatness and the Schwarzschild interior solution
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The paper gives a rigorous proof of the theorem that the only static conformally flat metric for a perfect

fluid distribution is the Schwarzschild interior metric.

1. INTRODUCTION

As is well known, the Schwarzschild interior solution
is static and conformally flat. The converse theorem
that the only static, conformally flat metric for a per-
fect fluid distribution (subject to the field equations of
relativity) is the Schwarzschild interior solution, has
been claimed to be proved by quite a number of investi-
gators at different times. However, none of these proofs
seems to be quite general and/or free from questionable
assumptions. Thus Buchdahl! (1971) assumed that a
fluid distribution in equilibrium must be spherically
symmetric. This however is not generally true as is
evident from some solutions given somewhat later by
Barnes? (1972). However all the relevant Barnes’ solu-
tions have singularities and it may well be that the theo-
rem assumed by Buchdahl istrue when one introduces
the additional condition of regularity, but even then no
proof in the literature has come to the notice of the
present authors.

Shortly after Buchdahl, Misra, and Tribedid gave a
proof assuming that a static conformally flat metric
must be of the form

ds® = e®[dy? + dy* + dz2® - at®],

with o independent of time ¢. This, however, is not cor-
rect. A contrary example is provided by the de Sitter
metric

ds? = % [dx? + dy? + dz® - dt?],

with “g”’ a function of the time coordinate. This metric
is static as it is transformable to

dv?

2 _
@ =T27R

+v2(d6? + sin?6 dg?) = (1 —gg)dtz

which admits a translation along the ¢ axis.

More recently, apparently ignorant of the earlier
works of Buchdahl and Misra and Tribedi, Gurses and
Gursey? proved the theorem again with the condition of
spherical symmetry. A somewhat different but related
theorem has been proved recently by Collinson.® Every
conformally flat axisymmetric stationary space— time
is necessarily static and if the source is a perfect fluid,
then the space—time metric is the Schwarzschild interi-
or metric. In the present discussion, we first point out
that for a perfect fluid, conformal flatness leads to
either a spatial constancy of the energy density p and
vanishing of the vorticity w and shear 0,, Or a vanishing
of (p +p), where p is the pressure of the fluid. In the
latter case, the metric reduces to the de Sitter form
and the velocity of the fluid is indeterminate. In the
first case if the expansion 9 is assumed to vanish, the
Schwarzschild interior metric follows. (If ##0, then
we have either the isotropic homogeneous cosmological
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solution or a family of nonhomogeneous cosmological
models®'7),

2. THEOREM AND ITS PROOF

Theorem: If the source of the gravitational field be a
perfect fluid with vanishing expansion and nonnegative
density and pressure, then the only conformally flat
space—time consistent with Einstein’s gravitational
equations is the Schwarzschild interior metric.

We recall some equations deduced by Ehlers, Kundt,
and Trimper (all of which are presented in a review by
Ehlers). We rewrite the necessary equations in the form
for a perfect fluid as presented by Ehlers.,?

e 7 f42 ,
hint o -U,U,+ww,+0,,0,+560,+h,

b fe _h{h; v

(Fig)
X (=3w? 202 +40°, ) + E, =0,

hOE, ;% + 3H @b =1, (P 0SH = — 5h Pp (2)

hPHyo b = 3E Wb =1, P 0gE% = (p + 3plw,, 3)
l’E:b +h{an ») cdcuc Hfd;e + E:be - Ec(:wb)c - Ec(acb)c (4)

- nacdenbmrucupoqu" + 2Hd (anb)cdeucule == %(P +p)0¢b'

In the above u¢ is the velocity vector of the fluid, w?,
0°® 44 and 0 are vorticity, shear, acceleration, and ex-
pansion defined in usual way. p and p are pressure and
density of the fluid. E_, and H,, are the so-called elec-
tric and magnetic type of components of the Weyle tensor

C,pcqr Where

Ecb :cacbducud (5)
and

H:b = %T)“"’C‘h bdu c”d (6)

For conformally flat space— time E,,=H,=0. With ex-
pansion § =0, we have from Eqs. (2)—(4)

p, =0 (7
and
(o +plw, = (p+p)o,,=0.
Hence either
p+tp=0 or w =0,=0. (8)

Equation (8) shows that the 3-space elements orthogonal
to the velocity vector mesh together, and from Eq. (7)
it follows that p is constant in 3-space. Again from the
conservation relation

(p+p)6+p=0 (9)
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p=0if =0, i.e., p is constant in time as well. The
vanishing of ¢,w, and 6 allow us to take the line element

in the static form.
ds® = godt® + g dxtdx®, (10)

where g, and g,,’s are all independent of time and the
velocity vector of the fluid is u® = (g,,) "' /25¢.

The Ricci tensor for the 3-space metric g,, can now
be written as (cf. Ehlers®)

RY,=1 0, + 2,4 +38,(20 - 45,).

From Eq. (1) we get

B im0, =38 ,15.=0. (12)
Substituting (12) in (11)
R)ikk:%pgih- (13)

Since p is constant, the 3-space is a space of constant
curvature, Hence the line element can be written as
(cf. Eisenhart®)

2 dx® + dy? + dz?
ds = gy dt - IO

Using Dingle’s formulae (as reproduced by Tolman!®),
Soo in the metric (14) is

B
Boo= (Al ‘1TE$?Z> K

where A, and B, are two arbitrary constants,

(14)

(15)

Presenting p=3/R?, and using a scale factor » =2RL
the final form of the metric has become
1 _Lz 2
2 _ 2
ds _(A B—1+L2) dt
4R?

_m[ (16)

dL?+ L2d6" + Lsin®0 d¢?],

where A and B are new constants. This is Schwarzschild
interior metric.
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3. THECASEp +p=0

If p+p=0, hence p is constant, p is also a constant.
Then the energy— momentum tensor may be written as

T¢, = -pd§
and from Einstein field equation
R, =-pb}
Hence the space is an Einstein space. The line ele-
ment may then be written® as

dff — dx® - dy* —dz®
L+ &/ DE-AP
with K;= - p=p. A proper transformation leads to de

Sitter line element; but «® and along with it w® and o°?
remain indeterminate.

ds®= am
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Invariant operators of IU(n) and 10(n) and their
eigenvalues

M. K. F. Wong
Fairfield University, Fairfield, Connecticut 06430

Hsin-Yang Yeh
Moorhead State University, Moorehead, Minnesota 56560

A systematic explicit evaluation of the invariant operators of IU(n) and IO(n) has been carried out. It is
found that the invariant operators of IU(n) and 10(n) can be obtained from those of U(n,1) and O(n,1)
by simple substitution. Similarly the eigenvalues of the invariant operators of IU(n) and 10(n) can be
obtained from those of U(n,1) and O(n,1) by simple substitution. Since the invariant operators and their
eigenvalues of U(n,1) and O(n,l) are closely related to those of U(n + 1) and O(n + 1) our results can be
expressed in explicitly closed and simple form.

1. INTRODUCTION 2. REPRESENTATIONS OF 1U(n) AND 10{n) AND

Recently there has been some renewed interest in the THEIR RELATION TO U{n, 1) AND O(n,1)

explicit evaluation of the eigenvalues of the invariant We follow basically the notations of Chakrabarti.®
operators of the unitary, orthogonal and simplectic IU(r) has generators A} (i, j=1,2,...,%) and I}, I
groups. This attempt was started by Perelomov and (i=1,2,...,n). The commutation relations are

Popov, 1% continued by Wong and Yeh,* who obtained SR

the eigenvalues in closed but complicated form, and [A],A%]="061A% - 8341, (2.1)
further improved by Nwachuku and Rashid, ®¢ who (A% 12 ]=~ B8} 2.2)
obtained the eigenvalues in closed and simple form. I,’ l . el '
Okubo and Edwards® then showed that the last result (A}, =80, @.3)
can be obtained by another. simple method. So far, ho?v- (Lt 1] = [[mii,lﬂ;i]: (st 10 ]=0 (2. 4)
ever, the results are confined to compact groups. This

leads us to ask whether there are noncompact groups with

whose invariant operators and eigenvalues can be ex- (Aj)‘:A{, (2.5)
plicitly evaluated in closed form. Of course, the re-

sults of U(n+1) and O(n + 1) can be trivially extended () = ot

to Ulr, 1) and O(n, 1). But U(n, 1) and Ofn, 1) can be ob- nt)" =T, (2.6)
tained by Chakrabarti. ® However, he did not discuss where

we expect that it may be possible to carry out a sys- .

tematic evaluation of the invariant operators of 1U(n) Lk I=1,2...,n

and I0(n). In this article we show that this is indeed the The matrix elements of ,7, are given by Eq. (2.9) of
case. Ref. 9, The (infinite-dimensional) basis is given by

The representations of IU(n) and IO(n) have been ob-

. ; as follows, Defi
tained by Chakrabarti, ® However, he did not discuss S. menne

systematically the invariant operators and their eigen- b =t[s, Inf1]+idfn1
Yalugs. Rosen and Roman!® obtained a sixth o.rder . A"ty [, m] 4 je it
invariant operator for IU(n) and fourth order invariant ! o !
operator for IO(n), but did not calculate their eigen- with
values, Nor, to our knowledge, do we know of any other 1 n oo
systematic study of the above problem. In this article bLE——= [Z ATAL+ <u—(3’1+"> Al
we shall show that the invariant operators and their 2V g Livist S
eigenvalues of IU(n) and I0(») can be obtained from those n
of U(n, 1) and O(n, 1) by direct substitution. A(2)=§F$1 iy

In Sec. 2 we give a brief summary of the representa- n
tions of IU(n) and IO(n) and their connection with U(x, 1) bgy=2 IAILI +ATLA
and O(x, 1). In Sec. 3 we present a detailed calculation 1 =1
for the sixth and ninth order invariant operators of
IU(x) and their relation to Cy and C; of Uln, 1). In Sec. =A+A%a, »

4 we present a similar calculation for the fourth and
eighth order invariant operators of IO(z) and their rela-
tion to C; and C4 of O(r, 1). Finally, we generalize the
results to all orders and present them as four theorems
in Sec. 5. Then one finds that

Ami

n+1

hy=(t +Zh,~ el —Zh,.,,) 1h>
i=2 izt
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(2.1) of Ref. 9. The deformation to U(n, 1) is obtained

(2.7)
(2.8)

2.9)

(2.10)

(2.11)

(2.12)
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Ad ="y, (2.13)

[AniirAnii]=[A;’dgA";1]:0, (2. 14)
and
A", A4 ]=A] - sjAT] 2. 15)
It can be easily seen that we can also write A%} as
A
Avi=—-— —n+g, (2.16)

@)

where A has been defined in (2. 11), Now it has been
shown by Wong and Yeh!! that £ and € are related to
Bqns1 and Ry,q 44 as follows:

h1",1=—§+—2§- +iek 2.17)
hmimi :%+%_iEK, (2.18)

where k* =44, and  need not be 1. For IU(n)
Chakrabarti has obtained the following invariant opera-
tors:

n
A‘(z)=‘z1 it = {2.19)
n n
Aty == 2pAiB gy == k(T hipey 1) (2. 20)
Ay =M +ATA gy =12 (E - n). (2.21)

We shall show in Secs. 3 and 5 that all other higher
order invariant operators can be obtained in closed and
simple form,

For I0(n) the generators are J,, =~dJ,, (a, b,
=1, 2,...,n) and I,,4, , (@=1,2,...,n). The commuta-
tion relations are

[Jaln Jod] = i(éachd + deJac - éud‘]bc - 6chmi)’ (2' 22)
[J!lblﬂﬂc] = i(baclmib - ébclrnia)’ (2- 23)
[In+1na Iyulb] = 0, (2. 24)

where
a, b,c,d=1,2,...,n.

The basis of I0(2%) and I0(2k — 1) and matrix
elements of Lyz.1 95, 2512 aT€ given by (6.3), (6.7),
(6.5), and (6.9) of Ref. 9 respectively, The deforma-
tion to Ofn, 1) are obtained as follows: Define

i A
Tt =7 [-, 1m.+1:| IS VA (2. 25)
mn ‘/A(z) 2
or
n 1 .
JJ' n+l :EE(Il rz+1Jij + Jiin ml) + Mj n+{ (7 = 1; 2: L) n),
it 2. 26)
where
n
Sen|R) =T bt sl B =1 | 1) @.27)
k=
and
n
A= g (2. 28)
i<j=1
Then one finds that
[Jml @ Jmi b] =- iJab- (2. 29)
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We have shown in Ref, 11 that for O(2k -1, 1)

Xzilu,l,
where

lig,a =hope Th- 2, (2. 30)
and for O(2k, 1)

harets =5 — k+ik (2.31)

The only invariant operator that Chakrabarti has
evaluated is Ay, =«’. We shall show in Secs. 4 and 5
that all higher order invariant operators of I0(n) can be
obtained in closed and simple form.,

3. EXPLICIT EVALUATION OF THE SIXTH AND
NINTH ORDER INVARIANT OPERATORS OF
1U{n)

In this section we attempt an explicit evaluation of the
sixth and ninth order invariant operators of IU(x). Our
method is as follows. First, we write down the second
and third order invariants (C, and C;) of Uz, 1). We then
substract from each expression all terms which contain
¢ and €, The result is an invariant operator in IU ().
Since these expressions contain A%, and A},, respectively
respectively on the denominators, we obtain the sixth
and ninth order invariant operators by multiplying the
resulting expressions by A%z, and A%zy respectively.

The eigenvalues are obtained in the following way.
The eigenvalues of C; and C; for U{x, 1) are well known.
We substract the terms containing ¢ and € according to
(2. 17) and (2.18). The result is the eigenvalues of the
invariant operators of IU(n) which, as one would expect,
contain no terms in iy 4,y and h,.q p.q-

Thus for the sixth order invariant operator of 1U(x)
we proceed in the following way. For notational con-
venience summation over repeated indices is assumed
from now on except where it is indicated. Also Latin
letters (except ») always go from 1 to n, while Greek

letters go from 1 to n+ 1.
Cy=ARAY =AJAT+ATIAL  + AL AT+ (ATDE. (3.1)

We find that (3. 1) contains the following terms in ¢ and
€ [from (2.7), (2.8), and (2.12)]:

- 286 + 52, (3.2)
Therefore, the sixth order invariant in IU () is
L= N +2n0a g, + 04, (AJA] + 87 8T - 28708,

~ LAE + [A'IA +ATPAT - FA?,

+ AT A+ Yy, (3.3)
where

AT =AlAL/2VA, (3.4)
and

F=r,, I,=r" (3.5)

It can be easily calculated that the eigenvalue of [ is
n nz
K4[Ehin+i(hin+l+n+2"2i)“'é-] (3.6)
i=2

Next we calculate the ninth order invariant operator [y
of IU(n). From U(n, 1) we have
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Cy = ACATAT =ALAAL + 3AL AL
+3AmIAL AT + (ATD® + (1 - 2m)AL AT
+ 245 - n(AT)? + Al - n ATl - AlAT 3.7
From (3. 7) we find that it contains the following terms
in e and &:

— (L3 A, + Ay FAg) + 153+ ( )f?

+-AﬂJc--4-c+ . (3. 8)

B
Therefore, I is
I ={A{A§A,§ +3(a’F - FPanAYa'l, - 1,a")

(¢3]
A 3
+2A?A;’;—n<+—A— +n) +A]+A (—A— +n>
(2)

(3.9)
The eigenvalue of I is
[7‘ T; nat 2 g + 800ty + 3R,y — Sihy oy + 31 + 60+ 3

= 6= Bni + 3%) = (1= 1) 5 gty oy + 20+ 2 = 2) =

i=2

n n 3 2

X(Eh?ml‘*zzh{mihjnd) ny\hz nel T 2 'S‘Ii]'

i=2 i#i

= (3.10)

4. EXPLICIT EVALUATION OF FOURTH AND
EIGHTH ORDER INVARIANT OPERATORS OF 10{n)

Following the same procedures as in the previous
section, we calculate the fourth order invariant opera-
tor of I0{x). We have, for Ofxn, 1),

s* 7, 3“ S (4.1)
;<J =1
Equation {4.1) contains the following term in A:
- Mg, (4.2)

Therefore, the fourth order invariant operator /; of
10(n) is easily seen to be

n
I = Y*JZ, WS iy T, (4.3)
i>7=1 ial
where
] ~[md (4‘4)

The eigenvalue of J; can be easily calculated: For I0(2%)

143“11 +7‘(21e 20+ 1), — (5- k)% (4.5)
i=2
for IO(2/’— 1)
Y‘h +$‘ 2k - 2i)h; - (1= B)%. (4.6)

l=2 1_2

For the eighth order invariant operator of I0(x), we
have, starting from C, of O(x, 1):
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Co =y i ~ 433 i motInet s = 41,
— 4 T p3Tnet 15 met 2001 394 patInet 494 net
noiJmikami‘ (n—-1)(n- 4) nel 13 4.7

where ;#j# k#1. We find that (4. 7) contains the follow-
ing terms involving A:

2)2ka2,

+ 2041 4]

26\t + (n— (4.8)

Therefore, the eighth order invariant operator I; of
I0(n) is

1
Iy= [ :/ijJern"' t!ij(‘(aJak+JkIa)(Ibel-'-JbiIb)

(n-1)(n-4
-4']2{1 & 4A)((z) )( _JalIa)(Ibel+JblIb)
Jindrg ( 1
I JIMNLT,, + Iy, L)+
A(g) a aj aj a) 8B4 b5y -82—3;,
X ooy + T I ydy g + I T oy + I I WL dy s + Iy 1)
1
8A (IaJa,+Jj1 )(I,,J,,,+ijl,,)(1 Iop + Jeple)
X Ly gy +Jdk[d)]A%2) (4.9)

Eigenvalues of I;: For 10(2k)

-4
Iy :K4{2§h;[(h; )P+ By + 7 Oy +r )+

- @k- 1)7‘(11, +27)h; 2= 3P (- 2 +3)}  (4.10)
where ¥; =k + 3 - i; for IO(2k - 1)

L= K4{k2h,[(h, Fr )P+ (g + )Py + By + )73 + 73]

- @r- 1) h(h +27;) + (k= 1)%(- 2K - 62 - 3)},
(4.11)
where
vi=k—-i. 4.12)

5. EXPLICIT EVALUATION OF ALL INVARIANT
OPERATORS OF 1U{n) AND 10(n)

From the results of Secs. 3 and 4 we arrive at the
following theorems which are applicable to all orders
for the invariant operators of IU{(n) and IO{n).

Theovem 1: The invariant operators of IU(n) are
obtained from those of U(n, 1) by the following sub-
stitution:

A:Hl [A ’ n‘rl] where &' :A{A;/ZK, (5- 1)
A;ml___[Ar’I;ﬁiL (5. 2)
AZIII‘_’_A/AQ)"Z- (5. 3)

Theorvem 2: The eigenvalues of the invariant opera-
tors of IU(n) are obtained from those of U(xn, 1) by the
following substitution:

h'i wel n/z’
Rpstney = 1/ 2.
Note that in the formula for C, of U(n, 1)

(5. 4)
(5.5)
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il Ne=Aj=1

C,=7 M 5.6

PSR NI, 6.9
where

AM=hi+tn+l-i, 5.7

the term containing 1/(\; - %,.;) cancels out, giving
(7\1 —’n/2, )\,,,1 "“71/2)

(g)’ I’i’n/Z-—)\j—l.
P/ g2 W2=M

We now illustrate our theorems by recalculating the
eigenvalues of A{z obtaining the same result as
Chakrabarti without going through the complicated
procedures used by him. We have

(5.8)

Co=Al+AmML, (5.9)
i
From (5.9) using Theorem 1, we obtain
noo, A
L= A -— -n (5.10)
= A
From (5. 10) using Theorem 2, we obtain for the
eigenvalue
Iy =% h;. (5.11)
ia

Therefore, from (5.10), (5.11) we obtain

n n
Afgy= A~ (7_}142)13(2) =— ([ +n)ag, =—k*(h;+n) (5.12)
i i

Equation (5. 12) agrees with Eq. (2.40) of Chakrabarti.

It is now a simple matter to obtain an invariant
operator in IU(x) which is a polynomial in the generators
of IU(n), i.e., containing no terms on the denominator.
This can be easily achieved by multiplying a suitable
power of &, with the expression obtained from
Theorem 1. The result is that the pth order invariant
operator of U, 1) corresponds to the (3p)th order
invariant operator of 1U{n).

Theorem 3: The invariant operators of I0(r) are
obtained from those of O{x, 1) by the following
substitution:

']jnﬁ'l—"é(li n+1Jij+Jijli ,“,1). (5. 13)

Theorem 4: The eigenvalues of the invariant operators
of I0(n) are obtained from those of Ofx, 1) by the follow-
ing substitution: For 10(2k — 1):

I’lzki"—k“"l_; (5‘ 14)
for 10(2k):
hzh,ii—’%—k- (5. 15)

From these two theorems, we find that the (2p)th order
invariant operator of Oz, 1) corresponds to the (4p)th
order invariant operator of I0(n). Now the invariant
operators of O(n+1) are

Cop=dy 1. d (5.16)

tte i2i3J‘3"4 o Jinii ’
The invariant operators of O{xn, 1) are obtained from
(5. 16) by replacing J; ,,4 by iJ; ,.1. In the meantime the
eigenvalues are the same for both O(z+1) and On, 1)
and can be expressed as’~? follows: for O(2r +1)
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: ~pi+1+
Ck:Epk n .p_l_ﬂ_];ﬂ, (5. 17)
i 4,9 Ps— by
5
where
n=2n+1, py=h;+n-1-1i,
(5.18
€1=0; nuter = O, (neth/2 )
For O(2h), (5.17) still holds with
n=2h, €;==08; 1.1 4. (5.19)

Thus all invariant operators and their eigenvalues of
I0(n) can be obtained in closed and simple form.

It remains for us to choose a sufficient number of
algebraically independent invariant operators so that
each irreducible representation of the group is com-
pletely specified by these operators. We start with
IU(@). It can be seen that an irreducible representation
of IU(r) is specified by n mutually independent invariant
operators. Since all the eigenvalues are known, it is
easy to check that the following invariant operators are
mutually independent. Thus we choose:

For IUQR): A, Alsy;
WE): sy, Ay, Iy

TUM4): By, Alsy, I Iy

Wk 2ay Ay, Io Iy o ov s Ity

For I0(2k+1), we need k+ 1 algebraically independent
invariant operators, and for I0(2%), we need /. algebrai-
cally independent invariant operators. Again, since the
eigenvalues are known, it can be checked that the
following invariant operators are algebraically
independent:

For IOQ@k+1): Agy, M, 1y Ly o ooy Iig;

for IO(Zk): A(z), 14, 18! 112,..., Il(k-i)'
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Automorphisms of the Bianchi model Lie groups
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A derivation of the group of automorphisms of the Lie group of isometries characteristic of each of the

nine Bianchi types of cosmologies is presented.

Among the various categories of cosmological models
based on the Einstein equations are the so-called
Bianchi models. These models are characterized by
homogeneous, nonisotropic spatial hypersurfaces para-
metrized by time. In a synchronous coordinate system,
that is, one in which the time axis is always normal to
the hypersurfaces of homogeneity, the metric is

1
dst =—dt + g, (Ddxtdx?, @

where i, j=+1,2,3, Space—time based on the possible
(three-dimensional) isometries of g1j, determined
originally by Bianchi! and later applied to general
relativity by Taub, : comprise the Bianchi models, There
are nine distinct isometry groups in all.?

The study of these models®~® has been very active and
fruitful in recent years. Many techniques and tools for
this exploration have been developed. One of these,
suggested by Heckmann and Schiicking, ® is to use the
various groups of automorphisms of the Lie groups
descriptive of the Bianchi isometries. This suggestion,
however, does not seem to have been taken up. The
author, in a current investigation, determined several
of these groups of automorphisms, found them to be of
sufficient interest to warrant determination of the entire
set. It is the purpose of this paper to present them,

Recall briefly a few immediately pertinent if elemen-
tary facts’ concerning Lie groups. Given the infini-
tesimal operators, X;, of such a group, the structure
constants are given in terms of the commutator

[X;, X;]=C* X, (2)

These depend in general on the coordinate system in
which the basis operators X; are set and will generally
change under a change in coordinate system. The group
of automorphisms of a Lie group of isometries is that
linear group of coordinate transformations with respect
to which the structure constants are invariant. We are
then concerned with the set of transformations, A},
such that

O, =AS A A O (3)

The group of isometries is a subgroup of and possibly
coincident with the group of automorphisms.

Of particular interest is the fact that of the nine
Bianchi symmetry groups, types VIII and IX are (semi-)
simple, types I—VII are not. It follows from general
theorems that for types VIII and IX, all automorphisms
are inner automorphisms, and the groups of auto-
morphisms are thus isomorphic to the original symmetry
groups,
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The equations are cubic in the unknowns, i.e., the
elements of Af,, but this may be substantially amelio-
rated by rewriting, e.g., (3) as

AjfcfrszAgrAhscjgh- )

There is no general algorithm for solving such sets of
equations, but recognition that A° ; is necessarily non-
singular facilitates greatly the solution. However, the
process is quite simple if heuristic. Consequently, only
one solution, Au(IV), is presented in detail. For the
others, only the results are given,

For the various groups, then, the set of nonvanishing
structure constants (following Ref. 3), the resulting set
of equations other than those that vanish identically, and
the solutions are as follows.

Bianchi I: All structure constants vanish. Consequent-
ly, the general linear group on three dimensions con-
stitutes the group of automorphisms.

Bianchi II: Clyy=-Cl3p=1.

0=A%A% - A3 A%, (5a)
Al =A%A3, _ A%A%, (5b)
Al =0, (5¢)
A =0, (5d)
0=A%A% — A3,4%, (5e)
a d e
Al=100b 7. (6)
0 gc¢
Necessarily a=bc - fg#0.
a eg—cd be-df
A‘“j:;lf 0 ac —af (7
0

—-ag ab

It may be noted thatAf”, has, as it ought to, precisely
the same structure as A°,,

Bianchi III: C' 3 =— Clyy =1.

0=A11A32—A31A12, (83)
0=ALA% - A3 Al (8b)
- Al =ANAY L A% AL (8c)
A% =0, (8q)
A% =0, (8e)
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a 0 e
Ay=100b 7|, )
001
b 0 -be
A-“,:;IIZ 0a-a |. (10)
00 ab

Bianchi IV: Cli3=—Cl3 =1, Clyy=-Cly, =1, C%,
=-Cl;=1,

0=ALA% - A3 AL, + A2 A%, - A3 A%, (11a)
0=A%A% - A3 A%, (11b)
Al =AL A3 _ A% AL + AL A% - A3 A2, (11c)
At =A% A% ABAY (11d)
Ad =0, (11e)
Al + Al =ALAS AR AN - A% AR, ABAY (111)
Al + A% =AM A% AR A% (11g)
A3~ A3, =0, (11h)

Equation (11e) applied to Eq. (11h) shows that A3, is
also zero. These imply that A%; may not vanish and
reduce Egs. (11a) and (11b) to trivial identities 0=0,
The remaining equations are also reduced.

Al =AL A% + AL A, (11c")
Al =AY A%, (11d")
Al + AL =ALAS + ALAS, (11¢)
A+ A% =ARAY, (11¢"
Equation (11d’') implies that either
At 20, A%,=1 (12)
or
Al =0, A% arbitrary. (13)

If the first case is applied to Eq. (13c¢’) the result is
Al =AY + AL, (14)
which is inconsistent. Therefore, the alternate equation

survives with A% =0 and A% arbitrary. The remaining
equations are

Al =ALAY,, (13¢")
Al =A% AY,, (13"
Aty = ALAS,, (13g")
Clearly, A% =1 and A'; =A% and are otherwise
arbitrary. Thus
ad e
AL=10ar (15)
001
a —-d df-ae
at—z 1o« —a |- (16)
0 0 a
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Bianchi V: Cliz=-Cly =1, Cly=-C?; =1,

0=ALA% - A3 AL, (17a)
0=A%A% - A% A, (17b)
Al =ALAS, A% AL, (17c)
A%y =AL A% - A% AL, (1174d)
~ Al =ALAS - AR AL (17e)
~ A% =AY A3 A% AT (17f)
a d e_
A= 1k b f |, (18)
00 1J
b -d df-be
A‘“,:H}—E}— -k a ek-af |. (19)
| 0 0 ab-dk

1
Necessarily ;7 —77#0-
Bianchi VI: Clig=-Cl; =1, C%3==Cly=h, h#0,1.

0=ALA% - A3 Al (20a)
0=A%A3% _ A3 A% (20b)
hAl, =AY A3, - A% AL (20c)
Al =A%A% - A% AL, (204)
Al =AY A3, - ALAS (20e)
A =A% A% - ALAY) (201)

Apart from the factors & these equations are identical
with those for Bianchi V.

a 0 e
At=100b r| > 1)
001
b 0 -be
A'“f:a_lb 0a -af| . (22)
00 ab

ZBi(mchiz VII: Clyy=-Clyy =—1, Clyy=~C¥y,=h, n* <4,
Cly=~C%y =1,

a b e
A= |=b a-nb f |, (23)
0 o0 1

a~nb -b bf-cla-hb)
A8 = (a - hab +b¥)! b a
0 0

—af—eb
a* ~ hab + b
(24)
Bianchi VIII: Clyy=—-Clyy==1, C4 =-Cl3=1, C¥,
==C%=1.

Bianchi IX: Clyy=~Cly =1, Cly=-C¥;=1, C%,
== 0321 =1,
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SUBGROUP STRUCTURE
FIG. 1. Subgroup structures.

As noted earlier the groups of automorphisms for
Bianchi types VIII and IX are isomorphic to the Bianchi
type VIII and IX symmetry groups respectively. These
are just the three-dimensional rotation group for type
IX and the “2 +1” Lorentz group for type VIII. For the
choice of axes for this latter case, X? and X* are space-
like and X! is timelike.

It turns out that the automorphism groups for types
OI and VI are identical. This is not too surprising inas-

253 J. Math. Phys., Vol. 20, No. 2, February 1979

much as type IIl symmetry is obtained from type VI if,
in the latter, C%3=0. Also, the various groups of
automorphisms have subgroup relations with each other
and all are subgroups of GL(3), the general linear group
on three dimensions. The specific relations are shown
in Fig. 1 {arrows point from larger group to subgroup).
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Perturbative solution of the Percus-Yevick integral
equation for a general class of intermolecular potential

M. Chen

Department of Mathematics, Vanier College, St. Laurent, Quebec

(Received 28 November 1977; revised manuscript received 27 February 1978)

A qualitative investigation of the Percus~Yevick integral equation by perturbation method is discussed for
a general class of intermolecular potential. Under some general assumptions it is proved that the
Percus—Yevick integral equation has a unique solution when the particle density p is in the region
0<p <033, and a divergent solution when p is greater than 0.33. Moreover, the perturbation series is
absolutely and uniformly convergent if the supremum norms of the nth order solutions are less than or

equal to n!

I. INTRODUCTION

Consider a system of N molecules in a volume ¥V and
at temperature 7. Suppose that the potential energy
¢{r,,r,,...,T,) of this system can be written as the
sum of pairwise intermolecular potential U(ru),

o 1
Or,, Ty, 00, T)= 2 Ulr,),
1=4¢y
where r,; is the position of the ith molecule and 7y
=Ir,~r_I.
J

Define the configurational probability function by
PINr T, ... Ty ) =e0(f e dr dr,t dry ),
where R=1/K,T, K, is the Boltzmann constant.

The probability distribution functions of lower orders
can then be obtained from p'¥ (r,,r,,...,ry). In parti-
cular, the probability of finding a molecule in a volume
element dr, at r, and another molecule in dr, at r, is
given by

!
n®(r,,r,)dr, dr, :(Tv%ﬁ)_!(fe%drx .o 'drN>

xdrdry Je™odr, - dr,)™

For a simple fluid the intermolecular forces are cen-
tral forces and consequently n'¥(ry, r,) depends only on
the distance 7, between molecules 1 and 2. When 7y, is
large, we can obtain n%’(y,)~ N(N —1)/V?~p® in the
thermodynamic limit ¥ — «, V- but p=1imy_.y-<(N/
V) <o,

The radial distribution function g(»,,) of a simple fluid
is defined by

1
glry) :F?n‘z’(rlz).

Since g(»,,) — 1 as »,, — <, we define the total correla-
tion function h(r,,) between molecules 1 and 2 by

hr ) =glry) -1,

Following Ornstein and Zernike, ! the total correlation
function i(r,,) can be written as the sum of the direct
correlation function C{r;,} and an indirect correlation
function which accounts for the correlation of molecules
1 and 2 through a third molecule,

I(ry,) = Cry,) +p [ by ,)C(r,,) dr,. ey
The convolution relation (1) is usually called the
Orstein—Zernike (O.Z.) relation, which can be con-
sidered as the definition of C(r ).
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In order to obtain thermodynamic properties of a
fluid it is essential to know the radial distribution func-~
tion g(7,,).? Unfortunately, so far there is no exact the-
ory for g(r,,). Several approximate theories have been
proposed in the past. Based on numerical calculations
the Percus—Yevick® (P,Y.) approximation seems to be
the most successful theory.

Let
flyy=eBUr _1,

yr)=efMg(y), r=r,.

The P.Y. approximation assumes that C(r) vanishes
outside the range of the intermolecular potential U(»),
specifically, C(»)=f(r) y(r).

The P.Y. approximation together with the 0.7, rela-
tion (1) forms an integral equation for g(») in terms of
y(r),

y) =1+p[y(") fr"Hexpl - BUG -y (r —7") = 1}ar’,
which is called the P.Y. integral equation.

The P.Y. integral equation has been solved by
Wertheim,* Thiel,® Baxter,® and recently by Chen’ for
the hard sphere potential. For a more realistic poten-
tial, Wertheim* had considered an attractive potential
with a range less than the diameter of hard spheres.,
Unfortunately, his results were not very conclusive. On
the other hand, Groeneveld® had studied the existence
and analytic properties of solutions to the P.Y. integral
equation by considering the series expansion of C(») and
vy(r) in density p. Under the assumptions

(1) A=supfexp{-pU(Ir,—r,DN]}< =,

T1:T2

(i) B=sup(f{exp{- pU(Ir, -1, 1}] ~ 1}dr,) <o,

1

Groeneveld proved that there existed a unique solution
of C(y) and y(») in series of p which were analytic in the
region Blpl< (44)™,

Recently Watts® had numerically solved the P.Y. in-
tegral equation by truncating the Lennard—Jones poten-
tial at » =3.50, =50, and v =60 (0: hard sphere diam-
eter). It was found that there existed a phase transition
with critical density close to p,=0,27 and a critical tem-
temperature dependent upon the truncation of the poten-
tial. Outside the critical region the P.Y, integral equa-
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tion had two solutions. The solution in the higher densi-~
ty region was an unphysical one.

The purpose of this paper is to make a qualitative in-
vestigation of the P.Y. integral equation for a general

class of intermolecular potential by perturbation method.

We assume that the potential has a hard core and a weak
attractive tail with infinite range. In contrast to
Groeneveld’s method, the attractive potential is con-
sidered as a perturbation on the repulsive potential,!®
The perturbation series is constructed by making use of
Baxter’s relations® (B.R.) together with the P.Y. as-
sumption. A set of coupled integral-differential equa-
tions is then obtained. Under some general conditions
we prove that the P.Y, integral equation has a unique
solution when 0<1<0,175 and 1<% <2.66, and a diver-
gent solution when 0.175<7<1 and 7> 2,66, where 7

= _ﬂp, p is the particle density. It is also shown that the
perturbatlon series is absolutely and uniformly conver-
gent if the supremum norms of the nth order solutions
are less than or equal to n!. The method discussed in
this paper is quite different from that of Groeneveld;
However, the basic ideas are very similar,

Il. PERTURBATION SERIES

Let h(w) = [e!™ h(r)dr and S(v)= [7t(t)dt. It has been
proved!! that the O.Z. relation (1) can be transformed
into the following Baxter’s relations (B.R.) if and only
if 2(w) is bounded for real w:

re()=-Q ) +12 1 7Q(NQ(t-7)dl, r=20,  (2)
vh(r)=-Q"(r) + 121 (r -
xh(ir — 1) Q(¢)dt,

where ¢(r) is a continuous, bounded function on [0,),
and that @(»)—0, IS(»r}| —ae™ as yr —~= (a,0 are real
numbers).

r=0, (3)

In terms of the P.Y. assumption ¢(»)=f{»)y(r) and
Baxter’s relations (2), (3), the P.Y. integral equation
can be rewritten as the following coupled integral-dif-
ferential equations for » = 0:

re(r)==Q"(n +120) Q" (NQU - dt,
rh(r)=-@Q' (;)+12nj (r=Ohr(ly-thHe®)d, (4)
) =r)y(r).

Consider the intermolecular potentiall?

u(r) =1, (r) = r&v(r), (5)
where
) 7’<17
uo(r)=
0, »=>1,
0, »=1,
v(r) =

a positive smooth function for » > 1 which
monotonically decreases to 0 faster than
r®asy o,

§ denotes the maximum of the physical tail potential so
that Maxlo(r)l =1, and 0< Ix] <1,
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If the attractive potential — £v(r) is considered as a
perturbation on the hard sphere potential u,(r) we can
obtain a series expansion in A8 for f(r),

fOr)=expl - Buy(r)] -exp[rptv(r)] - 1
=f,r)+ Q -:7;- £,
where
folr) =exp| - Bu,(r)] -
S r)y=expl - Buy(r)] - [BEv ()],

Similarly we can write the following perturbation series
expansion:

Q) =Qulr) + 5 1 (N8 Q, ), ©)
Y =3,(r) +i) 1—,(wz 9., )
h(r) =hy(r) + ‘ (BEI R (), (8)
clr)=colr) +§:m—!(ms)" e, ©)

where (8¢)* =K,T/¢ is the reduced temperature, the
subscript “0” in Q,(r), y,(r), hy(r), c,(r) denotes the
unperturbed system with hard sphere potential u,(r),
and

h,(r) =exp[~ Buo(r)]"io( ) @iy, ), n=1,
) =expl = o] 5 (D0 9,4 0)
-y,r), nz1,

From (4) and (6)—(9) we can obtain the following results:
v eqlr) = - Q3lr) + 120 [ Q4(t)
XQ,t -r)dt, 0<r<1,
7hor) == Qylr) + 120 [ (r - 1)

(10)

Xh(lr =t1) Q(t), r=0,

col?)=f,(r)y,lr), »>0,

and

e =-Q+12n [ 2 (D))
xQ, (t-v)dt, r=1, n>1, (11)

rh,(r)=-Q,(r)+ 12 [:: )Q,(t)
x{exp[ - guy(1r - ¢1)]
X8 o = 10183, (1 = 10}
+h0(|r-t|)Q,,(t)]dt, r=1, n>1. (12)

Note that (10) is the P.Y. integral equation for a system
of hard spheres. The solution of (10) is well known, *~7

Due to the nature of the intermolecular potential in
(56), (11), and (12) can be further simplified. After some
lengthly derivations we finally obtain the following
results:
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Qlr)=A(r)-12n f: (r =0 Q,(t)dt

+ 127 f:l(r —th,(t -=7)Q,()dt, O<r<i,
(13)

Q=B +121)]" QUOQ -dt, r=1, (14)

n=1

¥,0) =90 = 1202 (D) ], Q0@ (¢ - vat

T+l

~ 129 ! QNN (¢t —r)dt - 120 [ 7 Q(t)

r

XQ (t —-7r)dt, 0<r<1, (15)

Y. () =D (") +12n J; @t -nY, (0dt, 1<r<2, (16)

1
Y () =E ) +120), QOY,0r -dt, r=2, (A7)
where Y (r) =vy,(r), A, (r), B (), D (r) and E (r) are
functions of @,(») and Y (v) for m <n, so that in the nth
order perturbation, they can be considered as known
functions.

Due to their complexity, the detailed expressions of
A, (r), B (r), D {r), and E,(r) are omitted since we will
not need them in subsequent discussions.

By considering the attractive potential as a perturba-
tion on the hard sphere potential we have constructed a
set of perturbation series in inverse temperature 3¢
expansion. From the P,Y. integral equation (4) we then
obtain a set of coupled integral-differential equations
(10) and (13)—(17). From (13)—(17), we note that the
method of solving these equations for the nth order per-
turbation can be described by the following procedure:

B (r)—~@.(r) for r=1—@,r)
D, r), for 1sr<2,
E (r), for
Y (r), for 0<r<1,
LY, ), for 1sv<2,
{Y (r), for

n

for »<1-— r=2,

rz2.

1. SOLUTIONS OF PERTURBATION SERIES

In this section, for simplicity, we confine our discus-
sion to solutions of the first order perturbation. The
methods discussed can be applied to all orders of
perturbation.

(i) Solution of @,(r) for »= 1:
rrel
QI =B, +12n ), @t -»Qihdt, r=1. (18)
We can rewrite (18) as

or)=aly)+u f,m K(t - r)o{t)dt

=ar)+ ufolK(tw(tw)(u, r=1, (19)

where ¢(r)=@Qi(r), alr)=B,r)= -rvirly,(r), K{r)
=@,(r), and u=127n.

Let [,=[1,=). Consider the space C,(l,) of all contin-~
uous and bounded functions defined on I, which approach
to zero at least as fast as »™ as » — 0, i.e., Cp(l)
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=[fIf continuous and bounded on I, and that lim,_, 7*f(»)
=const.]. Suppose that C,(I,) is endowed with a sup
norm and 4 is the metric function defined by

d(fl)fz)=5upr€12 'fg('r) ‘fl('r)l, fu szCB(Iz).

Then CJl,) together with the metric function d forms a
complete metric space.?

Let ¢ be an arbitrary element of C,(l,). We define an
operator T on C,(l,) by

(TP =at)+u S o KOS+, oeCyly). (20)

Since a(r) is continuous and lim,_ r*a(r)=0, alr)is in
Cp(I,). But K(¢) is continuous on I, ={0,1},° thus
(T$)r) € Cy(l,), and T therefore transforms C,(Z,) into
itself, In order to be able to apply fixed point theorem
on C4(I,), we next consider the conditions so that T is
contractive,

Suppose ¢, and ¢, are two arbitrary elements of
Cy{l,). Then

Ad(T¢,,To,) < 1 fol LK) | dt-d(d,, d,),

1
and T is a contractive mapping if u fo IK(H)ldt<1.

Now that C,(,) is a complete metric space and 7 is a
contractive mapping on C,(l,), by fixed point theorem,
there exists a unique ¢ in C,4(J,) such that T¢ = ¢.

Pyroposition 1: Equation (19) has a unique solution
which is an element of C(I,) if p [51K(¢)Id¢<1.

Suppose {¢g, ¢y, Ppye.ny G, +++ } is a sequence of
functions in CB(IZ) defined by the following relations:

¢0(’r):(¥(1’),
¢, r)=To, )
=al@)+u f:K(t)¢"_1(t+r)dt, nz1,

Let §,(r) = ¢,(r)=alr) and ¢ (r) - ¢,,(r) = u"y,(r),
Then

nz1l,

) =23 um, (),
where

d)m(r)z(fol PPN

1 m
Jy MA@+t +t,+ 1+ ,)dt* dt,, m>1.
i=1

(21)

Suppose y =sup,c 1, la(r)|. 1t then follows from (21)
that

sup 14, () <y (/] [K(O)]anr.
re 1,

Hence, if ufiIK(t)Id¢<1, the series ¢p(r)=3", ', (r) is
absolutely and uniformly convergent for rc /..

Covollary: Suppose ufitK(t)di<1. The solution of
(19) can be expressed as an absolutely and uniformly
convergent series ¢(r)=a(r) +3r, 414, (r), where ¥, (r)
is given by (21).

In view of the asymptotic condition lim,_ 7*@;(»)
=const, we can obtain a unique continuous and bounded
function @,(r) defined by
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Q== [ ¢@at (22)

which satisfies the asymptotic condition lim,_.7°@,(r)
=const.

(ii) Solution of @,{r) for 0 s r<1:

Qi(r) =— 1217f: (r -1Q,()at +12n f,: r-1t)

Xyt —=¥)Q () dt, Osr<1, (23)
Let
1
1,=127 fo 1Q,(t)dt, (24)
m,=-12n [ @t (25)
and

B,(r)=12n f,,l (r — By olt = 7)Q,(8)dt

_ptan )] @)y +120 o .

We can rewrite (23) as
QI)=p,)+mur+1,.

Hence

Q,(r) 0<r<l1, (26)

In order to determine [,,m,, and p, in (26) we now
assume that @, is continuous at » =1, The boundary
condition of continuity at » =1 together with (24), (25)
provides us with three linear equations in three un-
knowns. Thus we can obtain a unique continuous function
Q,(») which satisfies (23) for 0 <7< 1 and (18) for »= 1.
By Stone—Weierstrass theorem @, can be uniformly
approximated by functions of the form e *"p(r) where
a >0 and p(r) is a polynomial. We summarize our re-
sults in the following:

= Bl(r)dr+% ri+1lo+p,,

Proposition 2: Suppose i [L1K(t)ldt<1. Then there
exists a unique continuous and bounded function @,
which satisfies (23) for 0 <» <1 and (18) for »> 1. Fur-
thermore, it is square integrable on [0,~), and can be
uniformly approximated by Laguerre functions e *"p(r),
where o > 0 and p{(r) is a polynomial.

(iii) Solution of ¥,(r) for 0 <»<1:

Y,0)=Qlr) - 120 J, QU1Q, (¢ - )t
-127 f,m Q,(t -7)Q()dt, O<wr<1, 27

Once @,(») is known, straightforward integration of (27)
yields Y,(») which is continuous on [0,1).

(iv) Solution of Y,(r) for 1 <7 <2:
Y,0)=D,(r)+12n [{ @r DY, (0dt, 1<r<2.(28)

Since @, is a quadratic function we can transform (28)
into a third order linear differential equation

T+ 1 V) 4 e Vi)
127(1 +2
—g(_—’;)z’“y,(r)ﬂ);"(r) 29)
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with the following boundary condition:
Y,(1)=D,(1),

Yi(1)= D'(l)— TID (1),

18
D) 725D+ g 2

The general solution of the homogeneous equation of
(29) is

Y, ()

Yr(1) =

D,(1).

=‘Z,1yi exp(t;r), (31)

where ,’s are constants to be determined from (30),
and the ¢,’s are roots of

6n 18n2 127(1 + 27)
=£+ + =0.
RO=C+y S Cr gyt =~ o
Let ¥,(r) =33y, (r)exp(t,»). Y (r) will be a solution of

(29) if and only if
s,
%117’: (r)exp(t,r)=0,

cZ=1> y; )t exp(t,r) =0, (32)

5 ;) explt,r) =0,

{=1

‘These equations can be solved for y:(r) by Cramer’s

rule, and the results integrated to give v,(r). From (30)
a unique solution for Y,(r) can be obtained, The solution
is of class C?on [1,2].

(v) Solution of Y,(r) for » = 2:
1
Y,0)=E (»)+127 fo Y, (r-1)Q,(t)dt

B +12m ) Q@ -0V, (0dt, r=2. (33)

It can be examined that D,(2)=E (2), D;(2)=E;(2), and

D?{(2)=E{(2). We have to find a Y, which satisfies (33)
for »= 2, and for 1 s <2, it is given by the solution of
(29).

We can transform (33) into the following third order
retarded linear nonhomogeneous differential -difference
equations,

Y"’(r)+16n Yy(r)+ L

Z O+ )

127(1 + 2n)
- -—(l__n—)?— YI('V) +

127
'(—1—_—7)—)-2-[(1 +277)Y1(1’ - 1)

+ 1+ )Yy -1)] (34)

=ET(r), r=2,

with initial condition given by the solution of (29) for
l<sys<2,

Following the standard continuation method of solving
differential-difference equation,'* the following result
can be proved:

Proposition 3: There exists a unique Y,(r) of class

C? on [2, =) which satisfies (34) for » > 2 and the initial
condition given by the solution of (29) for 1< <2,
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By generalizing Theorem 3.5 of Bellman—-Cooke, !5
we can obtain the exponential bound’ for Y,(r), 1Y,(r)|
< K exp(K,r), where K,,K, are positive constants. Since
lim,_E,(r)=0, we can take the Laplace transform of
(33).

Let
Y, )= fz Y, (r)e™dr,

Efs)= f: E\(r)e st dy,
=B 1 L1, Hwea
XQO(v)e'sv d‘U,
fl
H(s) =1-12nJ, Q,frle™ dr

=s"%[R(s) + L(s)e™],
where

EPESL.L B 187 12n(1+2n)
R ="+ T g s s -

L(sY=12n(1 =7)2[A +2m) + (1 + in)s].
The Laplace transform of (33) yields
Y,(s)=F,(s) [H(s)I (35)

Since all roots of H(s)=0 lie in the left~-hand plane ex-
cept for the triple roots at the origin,” we can arrange
the roots in order of nondecreasing absolute value with
roots of equal absolute value put in any prescribed
order. Let {Sn} be a sequence of roots so arranged. The
inverse Laplace transform of (35) then yields

Y, () ="Z?1 P_ (rYexp(sr), (36)

where P__ (r)exp(s r) denotes the residue of e F(s)
[H(s)]™* at a zero s, of H(s) and P,_,(») is a polynomial at
most of degree n -1 if s, is an » multiple root. By
Theorem 6.5 and Theorem 6. 8 of Bellman-—-Cooke, !¢
the series expansion in (36) is convergent for » > 2 and
uniformly convergent over any finite interval for » > 2.
Furthermore, from (33) we can obtain lim__ ¥,{»)=0.

Proposition 4: The solution of (33) can be expressed
as a convergent generalized Fourier -series type expan-
sion in (36) for ¥ = 2 which is uniformly convergent over
any finite interval for » > 2, Moreover, Y,{»)—~0as
¥y oo,

This completes our discussions of the first order
perturbative solution. Same conclusions as described
in Propositions 1—4 can be obtained for each order of
the perturbation series.

1V. PHYSICAL SIGNIFICANCE OF THE CONDITION
1

ufiKthde<i
o

Notice @,(¥)=K(r)=31 -m Q1 +2n)r2 - 3nr - (1 - 7))
for 0<7 <1 and @,(r)=K(r)=0 for »=>1.%1t can readily
be seen that K(r) has two roots ;= - 1)/(n+1), and 7,
=1, But K()<0 for >0 when 0< <1, Consequently
the conditions uJ}IK{(f)1dt< 1 implies 0<n< (3 -V7)/2.
On the other hand, when >1, we have K(r)=0 for 0
<yr<(p-1)/1+27n), and K(x) <0 for r=(n-1)/(1 +2n),
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Hence the condition p [} 1K(1)1dt<1 implies 1 <7< 2.66.
So long as 7 is in the regions (0, (3 - V77)/2) and (1,2.66),
the solutions we have obtained for @ (») and Y,(r) are
unique. @ (») is continuous and bounded on [0,%),
whereas Y, (r) is of class C® on [1,%). (So far we have
not been able to prove that Y, is continuous at r=1.)
When (3 -V7)/2<n<1 and n> 2.66, the operator T
defined by (20) is no longer contractlve and the series
solution of Q{(r)= alr)+¥,_, u"y (») diverges. The solu-
tion corresponding to the region 1<% < 2.66 should be
considered as unphysical solutions because the density
n is unreasonable high, However, n=(3 - v7)/2~0.175
corresponds to p=0.33, which is close to the critical
density p_=0.27 of the Lennard—Jones fluids reported
by Watts,

V. CONVERGENCE OF PERTURBATION SERIES AND
PHASE TRANSITIONS

Since Y, {r) is of class C? on [1, =) and that ¥,{»)—0
as ¥~ for n=1, it follows that ¥ (r) is uniformly con-
tinuous and bounded on [1,=). So is Q, (r) on [0,«) for
n= 1. It is possible that Y () is discontinuous at » =1,
however it can only be a finite discontinuity for Y, (r) is
continuous in [0,1). For the discussion of convergence
of pertrubation series, it suffices to consider Q"(?‘) and
Y (r) for r=1.

By virture of Proposition 2 and Proposition 4, each
Q,(») is uniformly continuous, bounded, and square
integrable on [0,%) and can be uniformly approximated
by Laguerre functions e*"p(r), where o> 0 and p(r) is
a polynomial whereas ¥, (r) =25, Py €Xp(s %), Where

17} is a polynomial at most of degree m -1 if S,
an m multiple root, and {S,} is a sequence of roots in
the left-hand plane (except for the triple root at the ori-
gin) arranged in nondecreasing order of absolute value.
Morever, Y, (r) is uniformly continuous and bounded on

[1,).

Although each @ (») and Y, (r) are bounded, sup @ (r)1
and sup | Y (r)| depend on n and may increase as » in-
creases, So far, we have not been able to obtain the
asymptotic behavior of sup |Q ()| and sup Y ()| as
n—». However, in view of the fact that

568 ) | <55 00

2= sup|@,(r),

the series =2,(8£)"/n!Q,(r) is absolutely and uniformly
convergent for 0< <1 if and only if supi®,(r)} < n! The
same conclusion can be made for the series

T [(BE/nt Y (r).

Proposition 5: Suppose L[5 |K(t)dt<1. The perturba-
tion series ==,[(8£)"/n!]Q,(r) and B[ (B&)"/n! 1Y, (r) are
absolutely and uniformly convergent if and only if
sup @, (r)<n! and sup 1Y (»)|<n!

Baxter® has shown that the inverse compressibility
can be written as

3 - ) 2
B(a )T Fo=01-120J, Quiark.

By the absolute and uniform convergence of the pertur-
bation series we have
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5 ' »er [T
QO)=1-12n] Q,(r)dr-12n2 i, /0- Q,(r)dr.
0 n=1 .

(37)

_ For hard sphere potential it can easily be seen that
Q0)=1-127[1Q(r)dr = {1 +2n)/(1 — n)?. But the phase
transition is completely determined by the condition
(8p/8p)p = Q(0)=0. Consequently there exists no gas-
liquid phase transition for hard sphere potential. For
the intermolecular potential considered in this paper
the possibility of a phase transition can not be com-
pletely ruled out because (37) can be approximated by a
polynomial P(8¢) due to the convergence of the series
[the convergence should be rapid since @(») is conver-
gent under the supremum norm. ]. The real roots of
P(g¢) in the interval (0,1)" give rise to phase
transitions.
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It is shown that the Lorentz invariants of an arbitrary gauge field are double valued functions of a
Lorentz invariant matrix LY when rank L =3 and single valued functions of L¥ when rank L=£3. The
question of how many Lorentz inequivalent realizations of the Lorentz invariants there are is answered.
This leads naturally to a classification of an arbitrary gauge field at a space-time point, given previously
by Anandan and Tod based on the rank of L. The answer to the analogous question for the gauge
invariants of the SU(2) gauge field leads to a new classification of this field. Five more classifications of
this field, including one which is symmetric with respect to space-time and isospin groups, are also

presented.

I. INTRODUCTION

The classification of gauge fields has recently attracted
considerable interest.'™ In this paper we shall study classifi-
cations that arise from a systematic study of Lorentz invar-
iants and gauge invariants at a space—time point for a guage
field F,,, (i=1.2,..., Nu,v=0,1,2,3, the skew symmetric in-
dices p,v transform under the Lorentz group, and / trans-
forms under the adjoint representation of the gauge group).
We study the Lorentz invariants of an arbitrary gauge field
and the gauge invariants of the SU(2) gauge field, addressing
specifically the following questions: (1) How many function-
ally independent Lorentz (gauge) invariants are there? (2)
what is a polynomial basis for the invariants which are poly-
nomials in F Lv?, and (3) how many Lorentz (gauge) inequi-
valent realizations of the invariants are there? (By a realiza-
tion of a given set of invariants, is meant a field :”” such that
the values of its corresponding invariants are the same as the
given set of invariants.)

We answer the above questions for the Lorentz invar-
iants of an arbitrary gauge field and the gauge invariants of
the SU(2) gauge field. The answers for Lorentz invariants
lead naturally to a classification of an arbitrary gauge field
based on the rank of a Lorentz invariant matrix LY. This
classification was first obtained by Anandan and Tod* using
different considerations. Essentially the same classification
was subsequently obtained for the special case of the SU (2)
gauge field by Wang and Yang® by considering the Lorentz-
gauge inequivalent realizations of the matrix L for this field.
In the present work, which was done independently of the
work of Wang and Yang, we study the Lorentz inequivalent
realizations of all Lorentz invariants for an arbitrary gauge
field. In particular we study a set of cubic Lorentz invariants
TY* which are not considered by Wang and Yang. In addi-
tion, we also study the gauge invariants for the SU(2) gauge
field. Our answers to the above questions for gauge invar-
iants lead to a new classification of this field in terms of the
number of linearly independent L,,, and two more classifi-
cations from an eigenvector problem of a matrix N which is
defined to be F!, F ;,(,. We also present three new classifica-

2y

“"This work forms part of the author’s PhD thesis at the University of Pitts-
burgh, May, 1978.

"Present address: Department of Physics and Astronomy, University of
Maryland, College Park, MD 20742.

260 J. Math. Phys. 20(2), February 1979

0022-2488/79/020260-09$01.00

tions of the anti-self-dual Yang-Mills field F Lv+z'1“‘;'“, by
considering a gauge invariant matrix M, including a classifi-
cation which is symmetric with respect to space~time and

isospin groups.

The proofs of most of the results are more easily given
using the spinor formalism,’ which is reviewed in Sec. II. But
the final results are also stated in the usual tensor notation so
that they can be understood without any knowledge of
spinor formalism. The question of Lorentz invariants is con-
sidered in Sec. I11. We first show that all Lorentz invariants

of an arbitrary gauge field are functions of two gauge tensors
LY and T"*. An explicit reduction algorithm is presented
which would enable one to write any Lorentz invariant,
which is a polynomial in F,, as a polynomial combination
of LYand T,

These two tensors are, however, not independent, and it
is shown that 7% is determined up to a sign by L Y. Also
since the complex symmetric N X NV matrix L, whose rank
does not exceed 3, always has realizations, it follows that the
number of functionally independent Lorentz invariants of
F :W (f=1,...,N) is the same as the number of independent
real parameters which determine L, i.e., 6N — 6 for N> 1 and
2 when N=1. The number of Lorentz inequivalent realiza-
tions are then shown to depend on the rank of L and the
number of linearly independent anti-self-dual fields
F! +1'F“,"“,, which leads to a classification of gauge fields.

oy
The question of Lorentz-gauge inequivalent realiza-
tions of the Lorentz invariants is also analyzed for the SU(2)
gauge field. This provides a refinement of the above men-
tioned classfication of an arbitrary gauge field, for this spe-
cial case. If our results here appear to differ from those of
Wang and Yang?® this is because we take account of the role
of the number of linearly independent anti-self-dual fields
Fi. + iF*, in studying the realizations of Lorentz invar-
iants, and because the spinor method we use is different from
their method, which leads to a slightly different classifica-
tion. In Sec. IV we introduce a relation called “conjugation,”
which enables one to obtain from any given classification of
the SU(2) gauge field, based on the algebraic properties of
the field, another classification. In Sec. V itis shown that the
SU(2) gauge field has 15 functionally independent gauge in-
variants, and a polynomial basis is given. Also, we show that
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if two SU(2) gauge fields have the same values for all their
gauge invariants, then they must be related by a gauge trans-
formation. This study leads to three new classifications of
the SU(2) gauge field. Most of the results are summarized in
Tables I, 11, I11, and Figs. 1 and 2.

Il. SPINOR FORMALISM

It is well known that the group SL(2,C } is (2-1) isomor-
phic to the proper, orthochronous Lorentz group L. This
enables the association with a tensor that transforms under
the Lorentz group, a corresponding spinor which transforms
under SL(2,C). Formally this correspondence can be made
by using the matrices o = (1,0), where 1 is the identity ma-
trix and ¢ are the Pauli spin matrices. Then the vector v, is
represented by the spinor v,0% , . It can be shown that’

FLvoﬁA'ozB’=¢;BGA’B’+¢_;'B'€AB’ Q.1
and if F*,,, = }¢, °F},, then
(F,iw + F'#V)U‘fm g =20 "45€ 45 (2.2

where ¢ /, ; are complex and symmetric in the spinor indices
A, B=0, 1,i=1,...N, the bar denotes complex conjugation,
and €5 (or €, is the antisymmetric tensor in two dimen-
sions with €, =¢4,.= 1. The spinor indices are raised and
lowered using the € spinor, which in this respect plays a role
analogous to the metric in tensor calculus.

Given an arbitrary symmetric rank-2 spinor ¢ ,z, there
exist rank-1 spinors ¢, and S, such that

as=0aBgy (2.3)
where afy,=1(a SBg+agB,). a, and B, are linearly in-
dependent if and only if ¢ , ;6 “?=A45£0. So when 1 =0,
¢ =0 a g for same spinor a .. Given two linearly indepen-
dent spinorsa, and f3g, a general symmetric spinor ¢ ,5 can
be written as

$ap=0aa,ap+b8 Bptca Ba) 24
where a, b, and ¢ are complex numbers.

Ill. LORENTZ INVARIANTS

We shall define a Lorentz invariant of an arbitrary
gauge field F Lv (i = 1,...N) tobean algebraic function of F jw
which is invariant under the Lorentz group for all values of

' .-* Since an infinite number of Lorentz invariants can be
formed from any given F,,, the study of these invariants and
their realizations may at first sight appear to be formidable.
The following theorem which is proven in Appendix A, how-
ever, leads to a remarkable simplification:

Theorem 1: Two gauge fields have the same values for
all their Lorentz invariants if and only if they have the same
values for LY and T defined by

LV=2¢'Bp/ 2 =K1 iJ¥ 3.1
and
T = 49 2454 14

where

= ¢k 4 jprik (3.2)
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U_1pi Five
KV=4iF! F™,

and

Ji=4p¥, i, (3.3)

jk k rijk __ ivwip ek
ty F‘VF”’F B, 0= —POYFRPFR R (34)
Moreover, any Lorentz invariant which is a polynomial in
F!, can be written as a polynomial in
K'Y, JU 1%, and t'%%.
L Yis a symmetric matrix, whereas 77" is completely

antisymmetric. Hence, when N =13, which is the case for the
SU(2) gauge field,

ijk

T 7% = r€b%, 3.5)
where
=leud Po5d E=1+it, (3.6)
and %%, € are completely antisymmetric with €' =¢,,,=1.
t and ¢’ are defined by?
ukaFjp F k#
= UAI*”F“”’F“"" 3.7

It follows that for N=3, T %% in Theorem 1, can be replaced
by 7. Also in this case it has been shown that*

7'=—detL. 3.8)
The generalization of (3.8) for an arbitrary gauge field is
TR = — 6L WIL AL *n, 3.9

where [ ] represents antisymmetrization over the indices i, j,
k (| | means that the index enclosed is left out in the antisym-
metrization). (3.9) is proved in Appendix B.

To find the inequivalent realizations of the Lorentz in-
variants, our strategy will be to first find the inequivalent
realizations of L. Theorem 1 then ensures that two realiza-
tions of L will have the same values for all the Lorentz invar-
iants if and only if they have the same values for T%%, The
number of Lorentz inequivalent realizations of L for an arbi-
trary gauge field is given by the following theorem:

Theorem 2: Let L ¥ be an N X N complex symmetric
matrix. Then there exists a gauge field satisfying (3.1) if and
only if rank L <3. The number of Lorentz inequivalent real-
izations, when they exist are given by Table 1.

Proof: Suppose there exists ¢ ‘, ; satisfying (3.1). Define
the column vectors

ol b
pL=| ¢u | ¢==| ¢4 (3.10)
Vg, Vg,
Since ¢ ,; is symmetric in 4, B, (3.1) implies
Li= —2¢ 4" @3.11

Since ¢/, ¢/*are 3 X1 column vectors, it follows that rank
Lg3s

Conversely suppose that rank L<3. We shall consider
separately the cases rank L =0, 1, 2, and 3.
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TABLE I Classification of gauge fields based on the number of Lorentz inequivalent realizations of the matrix L. The number in parenthesis gives the number
of inequivalent realizations of all Lorentz invariants when this number differs from the number of inequivalent realizations of L. For the special case of the
Maxwell field (¥ = 1) one obtains the usual classification into radiative and nonradiative types. The labels 1, II, etc., which denote the various types, were used

in Ref. 4.

No. of linearly independent Type of No. of Lorentz inequivalent
Rank L g or F/ 4 iFj:‘, j=1-N gauge field realizations of L for
N=1 N=2 N>3
3 3 - 2(1)
2 2 I 1 1
2 A 2 2 0 2N 4
i
1 D 1 1
1 N o2 oV 2
0
0 1 I
Rank L=0 dent ¢ ',y are invariant under the above nonsingular transfor-

Then L =0. This implies that either ¢/, ;=0, i=1,...,N,
or without loss of generality,

(3.12)

¢ 4p=Q4p,
for some spinor a ,£0. Given any other
# L p = aap a,7#0, we can transform it to ¢ | 5 by an
SL(2,C) transformation that takes ; into a,. Now write
& 5, i>2 in the general form (2.4) and using L Y =0=L"#
(no summation over /) we have

¢ up=X04p (3.13)
where y' = 1 and '/, i>2, are arbitrary complex parameters.
Clearly, given two fields ¢ /,  in the form (3.13), correspond-
ing to two sets of y' (with y! = 1), itis not possible to Lorentz
transform one to the other. Hence, the Lorentz inequivalent
fields in this case depend on N-1 complex or 2N-2 real
parameters.

Also it is clear that the two subcases above correspond
to zero or one linearly independent ¢/, (with respect to
complex coefficients).

Rank L =1

In this case there exists a nonsingular matrix P such
that

(3.14)

For each ¢/, ; satisfying (3.1), there exists a corresponding
¢ ', 5 satisfying

Li=24844, (3.15)
and conversely, where ¢ and @ are related by the nonsingular
transformation

‘l;;B:Pij L (3.16)
Also note that rank L and the number of linearly indepen-
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mation. Now since L ''=p,

¢ \s=p"a By, aB=1. (3.17)
for some spinors a ,, 5. (p has two square roots. Pick one
and denote it by p'/>.) Given any other
¢ 4s=p""a B 5, with a,B“=1=a B, there exists an
SL(2,C) transformation

a—a, BB
which transforms ¢ 4 ;—¢ | 5.

Now write @ 5, i>2 in the general form (2.4) and using
L'Y%=0, L"=0,i=2,..,N (no summation over i) one
obtains,

$is=Xaap i>2, or §'y=EB By i>2,(3.18)
where ' or £'(i>2) are arbitrary complex numbers.
Hence, in this case there can be one or two linearly indepen-
dent ¢ ;5. If only one ¢/, is linearly independent, then
Y'=0, £/ =0(i>2) so that ¢ ',z is unique up to Lorentz
transformations.

If there are two linearly independent & ', 5, then
Y50 or &'5£0 for some i = r>2. Without loss of general-
ity, r = 2. Now the SL(2,C) transformation a ,—(y*)"%a 4,
B,— (x>~ ?B,, leaves § | ; invariant, but transforms
Ya,ag to a,ap Similarly &85, can be transformed to
B B by a suitable SL(2,C') transformation. Also, it is not
possible to transform a ,a ginto 8 55 by an SL(2,C) transfor-
mation that leaves ¢ . , invariant. Hence, when N = 2, there
are two Lorentz inequivalent fields. When N3, however,
there are two sets of N-2 complex parameters Y’ or £°(i>3),
i.e., 2N-4 real parameters, which describe the Lorentz ine-
quivalent realizations.

Rank L=2

There exists a nonsingular matrix P such that
D r

- T 0

L=PLP" = . pg — r’==0.

r q
0 0

(3.19)
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Also, without loss of generality, p5%0. Then since Lh=p,

s =p"a By, aft=1 (3.20)

for somespinors @ ,, 8. Write é 2 in the general form (2.4).
Then

L=roep?=r, 3.21)
L= g=> —4ab+c*=gq, (3.22)
which gives
4ab=""PL _, (say). (3.23)
p

Since 140 (rank L = rank L = 2), a£0 and b5<0. The
SL(2,C) transformation

1/4 2a 172
—> (50)1/2 a4 BA—> (#) BA

1/4
does not change (3.20) but changes ¢ 2 5 on using (3.23), to
172

bin= T @aan + BBy + 10 VauByy (324)
Also LY =0=L%=L" i>3imply

dlp=0, i>2.

a,

3.25)

Since ¢/, ; have no arbitrary parameters, the field is unique
up to Lorentz transformations. Also in this case there are
exactly two linearly independent ¢ ‘5.

Rank L =3
There exists a nonsingular matrix P such that

E=PLPT=(I: O)
- o of

where the 3 X 3 matrix L, has one of the following canonical
forms®:

/{l 0 /11 0 O
(a)( A )) (b)(() A +i 1 ),
0 As 0 1 A, — 1

A 1+ 0
(c)(1+i A l—i).
0 1—i A

The above result is valid whenever rank L<3. In the present
case since rank L = 3, we have A 5£0fori =1, 2, 3.

(3.26)

or

Using now the same general techniques used for rank
L =0, 1 and 2, we can write the general ¢/, g up to Lorentz
transformations, corresponding to case (a), in the following
canonical way:

Case (a):
$us=21"auBs, aB’=1, (3.27)
172
bin=i—— (@,as+BB), (3.28)
_ ;/2
dis= * N (@ap—B.Lp) (3.29)
¢ip=0 fori>3. (3.30)
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Hence, there are exactly two Lorentz inequivalent
fields corresponding to the + sign in (3.29) in this case.
These two fields can be related by multiplication of the
whole field by — 1 and the SL(2,C) transformation,

a —if, B,—ia,
So in this case, L is realized by two Lorentz inequivalent

fields related by multiplication by — 1, which expresses the
result in a gauge covariant manner.

For cases (b) and (c) we find that, similar to case (a),
there are two Lorentz inequivalent fields ¢ /,; and —¢ ‘5,
where ¢/, ; can be written in the following canonical way:

Case (b):

¢ is=4"a,Bp, (3.31)
95,243= %(’12‘{'")1/2(‘1,4‘13'*'@4&3)» (3.32)
7 —As+i
3 172 2
=1+ “a a5+ ———— BB, (3.33)
¢ 4p=3%, A% 20t )2 L
$i5=0, i>3, (3.34)
provided A,+i540. If 4,+i=0, replace (3.32) and (3.33) by
$hs=aap (3.32)
and
$p=—ia,a5— BBy (3.33)
Case (¢):
5,113-_‘/1 }/2a(AﬁB)’ aAﬂA:I’ (3.35)
- 14+i+4 14+i—A
¢is= Tﬂl‘ha5+ Tnlﬂ,ﬁs
1+
+ Iz APy (3.36)
: A2
b= 3 (e 05+B4Bs) (3.37)
é'p=0 fori>3. (3.38)

This completes the proof of Theorem 2. We have now
obtained the Lorentz inequivalent fields corresponding to
any given L (of rank not exceeding 3). Now two fields having
the same values for L will also have the same values for all
their Lorentz invariants, except possibly when rank L =13.
This follows from Theorem 1 and the following theorem:

Theorem 3: The tensor T " =0 if and only if rank L=£3.
When rank L=3, 7% is determined up to a sign by L 7.

Proof: Suppose T #5£0for (i,j, k) = (1,2, 3) (say). Now
from (3.9),(T'#)2 = — 6L UL 2211 313 — _ detl, where
L, is the 3X 3 matrix formed from LY, i, j, = 1, 2, 3. There-
fore, detL,540, which implies that rank L>3. But from
Theorem 2 rank L<3. Hence, rank L = 3. Conversely, if L
has rank 3, then, since L is symmetric, it must have a nonze-
ro 3 X 3 principal minor N. It follows then from (3.9) that
(T y = — N0, where the indices i, j,, k., label the
rows (or columns) of the principal minor N.
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The fact that T is determined up to a sign by L 7 fol-
lows immediately from (3.9).

The two Lorentz inequivalent realizations of L, ¢
and —g¢ 5, which we found for rank L =3 (in the proof of
Theorem 2), have different values for the Lorentz invariant
T %%, This follows from (3.2) and the fact that T 7=£0 for
some i, j, k when rank L =3, according to Theorem 3. (In-
deed this provides an alternative proof of Lorentz inequiva-
lence of ¢, pand — ¢/, ; when rank L =3: There cannot be a
Lorentz transformation between them since they give differ-
ent values for the same Lorentz invariant 7%%.) So it follows
from Theorems 1, 2, and 3 that the realization of a complete
set of Lorentz invariants is unique up to Lorentz transforma-
tions when rank L = 3. When rank L5£3, the number of ine-
quivalent realizations of a complete set of Lorentz invariants
is the same as the number of inequivalent realizations of L.
The results are summarized in Table 1.

It also follows from Theorems 1 and 3 that L ¥ deter-
mine all the Lorentz invariants uniquely when rank L=43.
When rank L =3, however, corresponding to the given L 7
there will be two sets of Lorentz invariants depending on the
sign of 7%%. Hence, the Lorentz invariants may be regarded
as double valued functions of L Y when rank L =3 and single
valued functions of L ¥ when rank L=£3.

So far our analysis has been for an arbitrary gauge field.
When the gauge group is specified, however, one can also ask
the following different question: How many Lorentz-gauge
inequivalent realizations of the Lorentz invariants are
there?¢ This question can be easily answered from the above
results, for the SU(2) Yang-Mills field. Consider first the
realization of L, and notice that when rank L=3, ¢/, , and
—¢ ' 5 are Lorentz-gauge inequivalent, since they have dif-
ferent values for the nonzero Lorentz-gauge invariant 7.
When rank L =2 or when rank L=1 and one ¢ /, ; is linearly
independent, we have shown that the realization is unique up
to Lorentz transformations and hence obviously also up to
Lorentz-gauge transformations. When L=0, ¢, is of the
form (3.13) with y'being arbitrary complex numbers. Using
the freedom of Lorentz transformations, y’ can be normal-
ized, so that either

Yy =0 (3.39)
or, without loss of generality,
rv=1 (3.40)

It is easy to show that the set of y* satisfying (3.40) and are
inequivalent under the gauge transformations [O(3)], are de-
scribed by a single real parameter. If (3.39) is satisfied, how-
ever, ¢ X p = y*a ,ap is unique up to Lorentz-gauge
transformations.

Consider now the remaining case, namely rank L =1
and two ¢ ', , are linearly independent. Notice first from

(3.17) and (3.18) that ¢/, , determined by (3.16) must be of
the form

S up=aBy Or APy,

So using the freedom of Lorentz transformations, we can
write, without loss of generality,

(3.41)

¢ :13:([1 ”)]/Za(AﬁB)’ ¢ ,215= i(L Zz)l/zauﬁpﬁ'ﬂ,ﬁm
] ZBZ i‘(L 33)]/2a(ABB)+dBABB;

a =41, L1£0. (3.42)
The 4 signs in front of (L ?)'/? and (L **)"/? are deter-
minedby L “and L ¥(when L #or L **5£0). Itisclearnow that
given another field ¢ ., , in the form (3.42), with &’ instead of
d, then ¢/, ; cannot be transformed to ¢ *, ; by a gauge trans-
formation, if (d")*54d *. Hence, in this case the Lorentz-gauge
inequivalent fields are described by two real parameters cor-
responding to the different values of d %

The number of Lorentz-gauge inequivalent realizations
of all the Lorentz invariants is now obtained immediately
using theorems 1 and 3. We have above an additional type’
F = y'a qa 5 with y** = 0, so that we have a refinement of
the original classification of an arbitrary gauge field, for the
special case of an SU(2) gauge field. Type F can also be speci-
fied by the invariant conditions L =0and M = M =0
where L, M, and M are defined in (3.1), (4.2), and (4.6). The
results are surmmarized in Table 11

TABLE 11. Classification of SU(2) gauge field based on the number of Lorentz-gauge inequivalent realizations of the matrix L. A refinement of the classifica-
tion in Table I is obtained for this special case, with type Fas the additional case. The number in parenthesis refers to the number of Lorentz-gauge inequivalent
realizations of all the Lorentz invariants when this number differs from the number of Lorentz-gauge inequivalent realizations of L. This classification can be
more generally regarded as a classification of any gauge field with a compact gauge group.

No. of Linearly indepen-

No. of Lorentz-gauge

dent ¢/, or Type of Spinor inequivalent realiza-

Rank L Fl o +iF], j=1-N Gauge Field Form tions of L when G = SU(2)
3 3 I - 2(1)
2 2 1I - i

2 A a*Br, 2u0?
1

! D x'a B 1

1 N Yiaag oo
0 ! F Y'aan x'yt=0 1

0 o 0 1
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IV. CONJUGATION

In this section we shall specialize to the SU(2) gauge
field. The index i in ¢ %, can be replaced in this case by two
SU(2) spinor indices in the following way: Let 029, i=1, 2,
3, represent the Pauli spin matrices. Define

¢AB,I’Q:¢;BOJPQ‘ (4-1)
We shall reserve the letters P, Q,--- taken from the second
half of the Latin alphabet for SU(2) indices while the indices
A, B--- taken from the first half of the Latin alphabet will
continue to represent SL(2,C) indices.

Since the Pauli spin matrices o”»© are trace free, o’ @ are
symmetric, where the index Phas been raised using the alter-
nating symbol €2 which is invariant under SU(2). There-
fore, ¢ 9 is symmetric in both pairs of indices (4,B ) and
(P,Q). Moreover, the algebraic properties for the indices 4, B
are the same as for the indices P, Q. This is basically due to
the fact that the Lie algebra of SL(2,C) is the complexifica-
tion of the Lie algebra of SU(2). This implies that for every
algebraic statement on the indices 4, B, there is a corre-
sponding “conjugate” statement on the indices P, ¢, and
conversely.

Given a quantity X defined by a statement about the
indices 4, B and P, Q, we shall call the corresponding quanti-
ty defined by the conjugate statement its conjugate X*. For
instance, the conjugate of the type 4 = a, "%y, of the
SU(2) gauge field is the type 4 < = v, ¥69. The conjugate
of type N = YF6@a a,, is the type N© = PFy P By .
Type D = y**69a, B, is self-conjugate. It is clear now that
for any given classification of the SU(2) gauge field based on
the algebraic properties of the field, there is a corresponding
conjugate classification consisting of the conjugates of the
types in the former classification. More generally, if a state-
ment that depends only on the algebraic properties of ¢ 49 is
valid, then the conjugate statement is also valid.

We introduce now the matrix M, which is conjugate to
L, defined by

Mi=—2¢18"=24,,%",", aB=123  (42)
where ¢ was defined in (3.10). Then

TIM=M2%= - 26" pp“%=TrL. 4.3)
Similarly,

TrM*=TrL? TrM*=TrL". “4)
Therefore, by the Cayley-Hamilton theorem, detM =detZ
and the eigenvalues of L and M are also the same. To express
M in terms of more familiar fields, notice from (2.2) that
there exists a nonsingular linear transformation that maps
@, into E|—iH}i I=1,2,3, wherethe E} and H larethe
“electric” and “magnetic” vectors of the gauge field .
Hence, there exists a nonsingular 3 X 3 matrix P such that

PMP'=M, (4.5)

where M is defined by
M, =(E}—iH))E},—iH’)

=K°+il", (4.6)

where
(K C)Im :E-anm *HI)'H{n’ (J L)lm = _EIIH]m _Hj {n'
The Lorentz-gauge invariant defined in (3.6) can be
written as
V2
T= _3_ b4 BPQ¢B CQR¢CAR h 4.7)

where we have made use of
1
€ijpe>r —= (€P557'Q5R v GPUETszQ), (4.8)
V2

the <> denoting that the right-hand side is the spinor form of
the left-hand side [i«>(P,Q ), j«>(R,S), k—~(T,U)]. It is seen
from (4.7) that 7 is self-conjugate. The following theorem
can now be proven using methods analogous to those used in
proving theorem 2.

Theorem 4'*: Let M, ;be a 3X 3 complex symmetric
matrix. Then there always exists a gauge field satisfying
(4.2). The number of gauge and Lorentz-gauge inequivalent
realizations is given in Table III.

TABLE III. Classification of SU(2) gauge field, based on the number of gauge inequivalent and Lorentz-gauge inequivalent realizations of the matrix M. The
number of Lorentz-gauge inequivalent realizations is given for the general case when there are no relations on the eigenvalues of M other than what is implied by

the rank of M.
No. of gauge No. of Lorentz-
Type inequivalent gauge inequiva-
No. of linearly independent of Spinor realizations lent realiza-
Rank M Yig or Fi 4 iF ¥, j=1,=N Field form of M tion of M
3 3 I 2o’ 20’
2 2 1I¢ - 0’ o’
1 [2 A< a,89 o’ w0t
1 D ‘y(PtSQ’a(AﬂB) oo’ o’
t N yPYQa(AﬁB) o0’ oo}
0 1 F vyl o’ 1
0 o 1 1
265 J. Math. Phys., Vol. 20, No. 2, February 1979 Jeeva Anandan 265



For the SU(2) gauge field, using a proof similar to that
of (3.9) (see Appendix B), one can also prove

VABCVDEF = - 6N[A\D|NB|E|NC]F' (5-4)
It follows from (5.4) that:

Theorem T: The tensor ¥,z = 0 if and only if rank
N+£3. When rank N = 3, V5 is determined up to a sign by
NAB-

The proof of Theorem 7 is analogous to that of Theorem

Theorems 6 and 7 imply that except when rank N = 3,
N ,p determines all the gauge invariants. When rank N = 3
however, corresponding to the given N, there will be two
sets of gauge invariants depending on the sign of ¥ ,g. Now
since F LV may be regarded as six vectors in a three-dimen-
sional Euclidean space, N, can be specified by giving the
scalar products of these vectors with three among them.
Hence N, g has 15 and only 15 independent components and
therefore exactly 15 functionally independent gauge invar-
iants can be formed from the SU(2) gauge field F ;“ It also
follows from Theorems 5, 6, 7, and the remark below Theo-
rem 6, that rwo SU (2) gauge fields have the same values for all
their gauge invariants if and only if they are related by a gauge
transformation.

Classifications can also be obtained by considering the
eigenvector problem

NAGVB = AV A, (5.5)

The matrix N *5 (unlike N, ) is not symmetric in general.
However, since rank (N *3)<3, N *; can have three, four,
five, or six linearly independent eigenvectors and three, four,
five, or six zero eigenvalues. This provides more classifica-
tion schemes.

In conclusion, we note that numerous classifications of
gauge fields can be obtained. The classifications obtained in
the present paper are intimately related to the study of invar-
iants and may, therefore, be of importance.
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APPENDIX A

We shall prove Theorem 1 by explcitly constructing a
reduction algorithm that enables one to express all Lorentz
invariants as well-defined functions of L ¥ and T ¥%.

Consider first a Lorentz invariant which is a polynomi-
alin Fy,,. From the spinor form of F,, given in (2.1), it
follows that such an invariant will consist of sums of pro-
ducts of tensors of the form

Rq1=(¢ iAB¢jBC...¢IDA) (Al)
and

Rqu“.s — (¢ PA ,BI¢ qB ’C'".¢ SD‘A ')‘
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Clearly R =1L % and R %*=1T" where LY and T
were defined in (3.1) and (3.2). A tensor R ¥ with more
than three indices can be written as the sum of the tensor
Rk and tensors for which at least two of the indices i, j, k
are symmetric. The following identities will then enable us to
reduce R % to products of L 7 and T""".

¢y C¢ 2p=4L "€ 4, (A2)
and

¢ [iA C¢jCD¢ ,[()}; = %TijkEAB» (A3)
where ( ) and [ ] denote respectively symmetrization and
antisymmetrization. (A2) and (A3) can be proven by notic-
ing first that the left-hand sides of (A2) and (A3) are anti-
symmetric in (4,8 ) and therefore must be proportional to

€, The proportionality factor can then be determined by
contraction.

Similarly R?" can be reduced to products of
L7 and T**. So the polynomial invariant is a polynomial
combination L, LT "and T, Now a nonpolynomial invariant
also has to be formed from polynomial invariants, e.g., as
rational functions or square roots, etc. It follows that all
Lorentz invariants which are well-defined functions of F L‘,
can be expressed as well-defined functions of L ¥ and T ¥*.

Note: A polynomial basis for the Lorentz-gauge invar-
iants of an arbitrary gauge field can be constructed from the
gauge invariants formed from L ¥ and T 7* alone. For Abe-
lian gauge fields, however, we have above a reduction algo-
rithm that enables one to express any Lorentz-gauge invar-
iant as a polynomial in the fundamental set of invariants
(since in this case, the action of G on L ¥ and T %% is the
identity). In particular for the Maxwell field,

L=F, F*+iF*, F"and T =0, and so we have shown
that F, F** and F*, F** form a polynomial basis for the
invariants,'

APPENDIX B

The simplest way of proving (3.9) seems to be by replac-
ing the SL(2,C) spinor indices in (3.1) and (3.2) by complex
O(3) indices. Using

8,€4|c €8\ B
where p>(4,B), r(C,D), and (4.8), we can write

Li= —2ig), (B2)
and

T = —2 26,8 ¢’ 0 k, (B3)

where p, g, r are now complex O(3) indices." It follows that
T ™" =8, '8/ 8 £, D BT
— 6L W dmip, tkn

where we have used (B2) and the identity

8ps Op by,
€par€stu= 66 [pbfsq]x prlu = 5‘1—*‘ 8111 6qu . (B4)
é S é
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It is shown that a Hilbert space over the real Clifford algebra C, provides a mathematical framework,
consistent with the structure of the usual quantum mechanical formalism, for models for the unification of
weak, electromagnetic and strong interactions utilizing the exceptional Lie groups. In particular, in case
no further structure is assumed beyond that of C,, the group of automorphisms leaving invariant a
minimal subspace acts, in the ideal generated by that subspace, as G, and the subgroup of this group
leaving one generating element (e;) fixed acts, in this ideal, as the color gauge group SU(3). A
generalized phase algebra [ C; is defined by the requirement that quantum mechanical states can be
consistently constructed for a theory in which the smallest linear manifolds are closed over the subalgebra
€(1,e;) (isomorphic to the complex field) of C,. Eight solutions are found for the generalized phase
algebra, corresponding (up to an overall sign), in effect, to the use of e, as imaginary unit in each of
four superselection sectors. Operators linear over these alternative forms of imaginary unit provide distinct
types of “lepton—quark™ and “quark-quark” transitions. The subgroup in [ which leaves expectation
values of operators linear over Y invariant is its unitary subgroup U(4), and is a realization (explicitly
constructed) of the U(4) invariance of the complex scalar product. An embedding of the algebraic Hilbert
space into the complex space defined over €(l,e,) is shown to lead to a decomposition into “lepton” and
“‘quark” superselection subspaces. The color SU(3) subgroup of G, coincides with the SU(3) subgroup of
the generalized phase U(4) which leaves the “lepton” space invariant. The problem of constructing tensor

products is studied, and some remarks are made on observability and the role of nonassociativity.

1. INTRODUCTION

The notion of non-Abelian gauge fields has become a
useful theoretical tool in recent years. The fundamental idea
of Yang and Mills' now plays an important role in models for
the strong interactions,? where the global gauge group is
called the “color group™ (as distinguished from the “flavor
group” associated with hadron multiplets), and in renorma-
lizable models for the weak and electromagnetic interac-
tions.* In this framework, it appears possible to attempt a
unification of the strong, electromagnetic and weak interac-
tions by utilizing a gauge group which acts on the leptons
and the color and flavor degrees of freedom of the quark
fields, the spinor constituents of hadrons.

Giirsey and his co-workers have suggested® that the
space of internal degrees of freedom of leptons and quarks,
which form a basis for a gauge group of this type, may corre-
spond to the space of exceptional quantum mechanical states
discovered by Jordan, von Neumann, and Wigner® and that,
in this framework, a spontaneously broken gauge field the-
ory based on the exceptional Lie group E; is a reasonable
candidate. The quantum mechanical spaces in which the
transformation groups of algebraic automorphisms are F,,
E, E;, and E, may be represented as matrices incorporating

A brief preliminary report of this work was given at the VI International
Colloquium on Group Theoretical Methods in Physics, Tubingen, July,
18-22, 1977 (to appear in the Proceedings).

"Research supported in part by the Binational Science Foundation (BSF)
Jerusalem, Israel.

“"'Work supported in part by the National Science Foundation.
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3 3 submatrices with octonion (Cayley-number)-valued
elements.” The generalized projective geometries associated
with these spaces do not satisfy Desargues’ theorem,® and
Giirsey has suggested that this may lead to unusual conse-
quences for the observability of the corresponding quark
states. The interpretation of such a structure in terms of
physical measurements, presumably associated with the
question of “‘confinement,” has not yet been worked out.
Since the color singlet parts of given repesentations of the
exceptional groups lie in a Desarguesian subset, however,
they should be observable in the usual sense, and Giirsey
associates them with the normal leptons and hadrons.

The possibility that internal degrees of freedom are as-
sociated with exceptional quantum mechanical states was
considered several years ago. Stimulated by the work of
Pais,” attempting to calssify hadrons with the help of the
octonion algebra, and certain open questions raised by the
work of Jordan, von Neumann, and Wigner,* Goldstine and
Horwitz" defined the notion of a Hilbert space over Cayley
numbers (octonions) and studied some of its properties. Im-
mediate difficulties in the realization of such spaces in finite
dimensions, due to the nonassociative property of Cayley
numbers, were circumvented by the use of a real scalar prod-
uct, and a spectral theorem was proved for a certain class of
self-adjoint operators.'' One must, however, consider the
closure of linear manifolds under the action of multiplica-
tion by the elements of the nonassociative Cayley algebra
(for example, in order to obtain Fourier series expansions); it
was shown'® that every vector generates a linear manifold
over the reals of at most 128 dimensions, and that the basis
for this manifold can provide a faithful representation of C,,
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the Clifford algebra of order seven. The appearance of a lin-
ear vector space over a finite associative algebra raised the
question of the structure of Hilbert spaces over finite associ-
ative algebras. The general theory was worked out by Gold-
stine and Horwitz."

In the special case of C,, it was found that multiplica-
tion defined as an equivalence relation in a (minimal) one-
sided ideal recovers the form of the nonassociative algebra.
As pointed out above, the exceptional Lie groups proposed
as general gauge groups unifying the weak, electromagnetic
and strong interactions, containing both color and flavor
degrees of freedom, arise as automorphisms of algebras con-
structed of matrices with octonion valued elements. This
equivalence relation, however, permits us to reformulate the
construction of these automorphisms in terms of matric al-
gebras with elements in the associative algebra C,. Since
octonion multiplication rules are reproduced in a minimal
ideal, the automorphisms arise as the set of transformations
which leave that ideal invariant. For example, in the case
that we shall study in detail here with matrices of dimension
one (with no flavor degrees of freedom), the group of auto-
morphisms which leaves invariant one minimal ideal of C,
acts, in that ideal, as G,. The properties desired of Hilbert
spaces with octonion multipliers (structures which appear to
be difficult to interpret at the present time) can therefore be
studied in the framework of Hilbert spaces over associative
algebras, for which a quantum mechanical interpretation of
the ususal type is available.

Horwitz and Biedenharn' have shown that the propo-
sitional calculus associated with the algebraically closed lin-
ear manifolds of an algebraic Hilbert space of this type con-
stitute a complete, weakly modular, orthocomplemented,
atomic lattice, and therefore satisfies the axioms'!* of the
calculus of propositions characterizing quantum mechanics.
The fact that such a lattice can be embedded in a family of
Hilbert spaces over a field @ '* was used" to show that the
quantum theory described by a Hilbert space over an arbi-
trary finite algebra, in which the observables are linear with
respect to the quantities of the algebra, is isomorphic to a
quantum theory described by a Hilbert space over a field @
in which there are superselection rules.

In this paper, we shall adapt a fundamental idea of Giir-
sey and Giinaydin,' namely, the selection of a particular
element of the Cayley algebra to represent the imaginary
unit," to the framework of the associative algebra C,. The
subalgebra (1,¢,) of C; generated by unity and one of the
generating elements, e;, of C; (satisfying e 2= — 1), over the
reals, is isomorphic to the complex field. The scalar product
defined by the requirement of orthogonality between linear
manifolds closed over C(1,e,) is shown to be that given by
Ginaydin.'* We then proceed to study the requirements for
the construction of a physical state in a quantum mechanical
framework in which the smallest linear manifold is spanned
over the subalgebra C(1,e,) (the field @) by a single vector,
i.e., a structure isomorphic to the usual ray in complex Hil-
bert space. These requirements admit eight solutions for a
generalized phase algebra % C C;, analogous to the complex
phase in the usual complex Hilbert space, which could be
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utilized to construct local gauge transformations. Each of
these solutions is characterized by the fact that it commutes
with one of a set of eight “‘imaginary” units closely related to
e, (one of these is e, itself); they correspond, in fact, to the use
of + e,, with independent choice of signs, in each of four
superselection sectors, up to an over-all sign. These distinct
solutions provide alternative structures for operators which
induce ‘““lepton—quark” and “quark—quark’'® transitions
and their associated gauge algebras. Representations for the
algebras are explicitly constructed. They provide a realiza-
tion of the U(4) symmetry of the scalar product. The part of
this U(4) of algebraic phases which represents transforma-
tions leaving invariant one minimal subspace (for which the
equivalence relations discussed above define the nonassocia-
tive multiplication rules of the Cayley algebra) and the Clif-
ford element (for example) e;, is a U(3) which acts, in the
ideal generated by this minimal subspace, as SU(3), coincid-
ing with the color gauge subgroup of G,.'*

A Hilbert space over C,, with linear manifolds closed
over an algebra A C C; may be embedded in a family of Hil-
bert spaces over the complex field C(1,e,), following the pro-
cedure used in our earlier work." Defining “observables” as
the self-adjoint operators linear over ¥, the embedding re-
sults in a quantum theory defined on a family of complex
Hilbert spaces labelled by a superselection rule; these super-
selection spaces transform into each other under 2, as a re-
presentation for the U(4) for which the complex scalar prod-
uct is invariant. These spaces can be identified with the
“leptonic”™ (observable) and the “quark” (unobservable)
subspaces utilized by Giirsey and Giinaydin.!* We do not
offer rigorous arguments on why states in the “quark” space
are unobservable, but this demonstration shows the exis-
tence and interpretation of superselection rules which may
provide a useful mathematical framework for the descrip-
tion of such phemomena.

We remark that the structure outlined above is predi-
cated on the choice of a direction in the parameter space of
G, i.e., the direction of e;, which breaks the symmetry down
to SU(3). The complex Hilbert space constructed over
C(1,e;) is therefore parameterically dependent on the choice
of this direction. The full automorphism group of the mini-
mal right ideal which defines G, is therefore represented by a
family of such complex Hilbert spaces, with the direction of
e, as the superselection parameter labelling the separate
components that transform into each other under the action
of operators which are linear only over the reals (including
those of G,)."

The use of complex-valued [in C(1,e,)] wavefunctions to
express the quantum mechanical content of the algebraic
Hilbert space facilitates the construction of tensor products
(for the construction of many-body states). The situation is
somewhat complicated, however, by the fact that we are
working with a collection of complex Hilbert spaces that
transform into each other under the action of operators that
are for example, linear over C(1,¢,). In particular, transi-
tions?>*' from the “quark’ or “‘unobservable” space to the
“lepton” or “observable” (color singlet) space, and vice-
versa, are accompanied by complex conjugation. Operators
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linear over C(1,e,) on the whole space behave antilinearly, in
the manner of Wigner’s corepresentations,? on the compo-
nent Hilbert spaces for transitions of this type. One of the
conditions on a tensor product that one might require, name-
ly, that there exist an operator on the tensor product space
which is equivalent to the mapping induced by the action of
reasonably well-behaved operators on each of the constitu-
ent spaces, is not, for example, satisfied for a tensor product
of the type (antiassociator) discussed by Giinaydin.'¢ In this
paper, we shall discuss the problem raised above in some
detail, and provide a prescription for the construction of ten-
sor products which is consistent for operators linear over
C(1,e).

The plan of the paper is as follows. In Sec. I, we review
briefly the special structure of an algebraic Hilbert space
over the associative algebra C;; by studying the ortho-
gonality relations for the class of linear manifolds that is
closed over the subalgebra C(1,e;), we obtain the correspond-
ing scalar product in the form given by Giinaydin.'® In sec.
III, the properties of operators linear over C(1,e;) and the
superselection rules that they satisfy are discussed. In Sec.
IV, the sesquilinear forms corresponding to quantum states
are constructed in the most general form consistent with
Gleason’s theorem®; following a procedure established in
our earlier work,'’ we characterize the generalized “phase”
algebras M C C,, and discuss the pure states. In Sec. V, the
solutions for A are made explicit, and superselection rules
for operators linear over % are displayed by embedding the
Hilbert space" over C; into the complex Hilbert space over
C(1,e;). It is shown that the group contained in % which
leaves expectation values of operators linear over 2 invariant
is U(4), and is a realization of the U(4) invariance of the
complex scalar product. The relation between the linear
U(4) and the corepresentation quality of the transformations
induced by it on the wavefunctions is explicitly given. It is
also shown that the automorphisms of C, which leave invar-
iant the subspace defining the Cayley multiplication rules
act like G, in the ideal generated by that subspace, and the
subset of these automorphisms which also leave e; invariant
act like SU(3) in this ideal; this SU(3) is the intersection of
the unitary subgroup U(4) in % (which leaves the complex
scalar product invariant) with G,. A discussion of the con-
struction of tensor products is given in Sec. VI, and, in a
concluding section, we make some remarks on observability
and the role of nonassociativity.

Il. ALGEBRAIC HILBERT SPACE OVER C,

We denote by e,,e,,...,e; the generating elements of the
associative real Clifford algebra C;. These elements have the

property

{ene,} =ee, +ee,= — 8,2, 2.1
and an involution (called “conjugate”)
e*az_ea! (eaeb)*:e*be*a‘ (2‘2)

If an element a of C, satisfies a* =a, it is said to be
symmetric.

We shall take this algebra, with unity quantity, as the
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set of “scalars” in a Hilbert space #°. The properties of such
Hilbert spaces (for general finite associative algebras) were
discussed by Goldstine and Horwitz'%; definitions and some
of the results will be restated here for convenience.

p- 1: 7 is a linear space in the sense that there exists an
operation called multiplication by a scalar f.a for every a in
C, (that is, 1, e,,...,85, €1€,,...,€5 €1,€1€:€1,...,€,€,8,€,€5€4e7, and
real linear combinations of these) and fin &, with values in
7. There is also an operation called addition of vectors f+ g,
defined for every £, g, in 7 with values in J%°. These proper-
ties are associative and distributive in the usual way.

It is well known? that the Clifford algebras are matrix
algebras, i.e., with finite matrix representations over the
reals. In any such representation, the usual concepts of the
trace and positivity are well defined. We may therefore intro-
duce an inner product process in 7.

p. 2: There exists an inner product (f,g) defined for all f,g
in % with values in C, such that

(F+g.h)=0(h)+@.h),
(e)* =&/
(f/)>0 (symmetric), and it is zero if and only if =0,
(f.ga)=(f.g)a for aeC,;

We define the modulus of a to be
lal=tr(aa*)"*>0, 2.3)

where tr is the usual trace function (normalized so that
trl=1); /=0 if and only if  =0. With the help of (2.3), we
may define a norm for the space #"

AR =IAN=tr (7). 2.9
The Schwarz inequality
A< Al llell 2.5)

is valid. With the norm (2.4), we may construct Cauchy se-
quences. We state the completeness postulate.

p. 3: The space 77 is complete, i.e., every Cauchy se-
quence in 5 has its limit in 57

We now state some geometrical notions which are cen-
tral to our study,

Definition 2.1: The vectors fand g are said to be ortho-
gonal in case (f,g)=0.

Definition 2.2: The set M is said to be a linear closed
manifold in case it is closed and contains, along with f,g,
Jfa+gb, where a, beC,.

Let M be a linear closed manifold and f an arbitrary
vector. Then'? there is a unique decomposition of finto

f=g+h, (2.6)

where g isin M and 4 is in #"— M. Given M and f, we say that
P, fis the g in M existence is asserted in (2.6). The projection
operator P,, is totally linear," i.e.,

Py (fa)=(P pf)a
for all aeC,, and it satisfies
Py (P f)=P mf,

2.7
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(S Pug)=(Prf8), (2.8)

The projection operation P,, with properties (2.7), (2.8) have
the same order relations that obtain among projection opera-
tors in a complex Hilbert space, i.e., for all fin 77,

NP A A< P nf])? forM CN.

In this case, P, P, =P ,,, and we say that P ,, <P .

(2.9)

The set of all closed linear manifolds on a Hilbert space
over a finite associative algebra with unity quantity was
shown by Horwitz and Biedenharn'? to be a complete, ortho-
complemented, weakly modular atomic lattice, and there-
fore to satisfy the axioms of the usual quantum theory" (the
atoms are the one-dimensional linear manifolds generated
by the minimal right ideals of C; on each fin 7%°). Such a
lattice can be embedded in a Hilbert space over a field.”
Embedding the closed linear manifolds of 57 in a Hilbert
space 7y over the reals, one finds that the corresponding
quantum theory, with totally linear observables, contains
superselection sectors labelled by the minimal right ideals."

We wish to make explicit the representation of C; in
which we shall be working.'® Since ¢,¢,¢,e.e;ec¢; = E; com-
mutes with all of e,,...,e; and E 2=1, we may split the space
" in an invariant way,

H = +F,
where
f=fP., f=fP.
and
P, =3I+E) (2.10)

The decomposition (2.10) is invariant under the action of
totally linear operators [with the property (2.7)] and under
right multiplication by any element of C,. In each subspace,
the seven generating elements are not completely indepen-
dent, but satisfy

€7Pf; :i(el.“es)Pit’ (211)

and an irreducible representation of the remaining C; alge-
bra can be obtained in each of %", and &% by the usual
quantum mechanical procedure of diagonalizing a complete
set of symmetric commuting “‘operators.” We take these to
be

€,0283, €586, Ce€2€4. 2.12)

The minimal projection® in the C; algebra, for which the
three operators in (2.12) take on the value —1, is
Po=Lt(I—eiee))T —eseie (I —eqees). (2.13)

The set of eight minimal projections spanning (the right

space of) 5%, (or of #7) is then
P =e P, i=0,1,.,, (2.14)

each choice of i corresponding to a distinct combination of
signs replacing the negative signs in (2.13). Then,

I=% PP+ > PP, (2.15)
We may now define a set of “multiplication laws” for
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elements of the Clifford algebra in each minimal subspace by
means of the equivalence relations"

P P.ab=P P (ab)’, (2.16)
where each of a, b, and (ab) i are of the form
7
a=>y a.e,, .17
i=0

with g, real. These relations may be used to reduce any ele-
ment of C; to the form (2.17) by iterative use of (2.16). Of the
sixteen equivalence relations (2.16), we write explicitly only
the results for (ab )g here. Consider, for example,

P¢POeIeZ:Pfoé(]_elezel)elel
=P«Po%(elez+ea )

=P4Po%(1—elezeg)ej, (218)

so that
(2.19)

Together with therelation (2.11), (2.19) and similarly derived
relations for the other pairs one finds the nonassociative mul-
tiplication laws for octonions in the form utilized by Giirsey
and Giinaydin'®

(ee) d =e..

(ei€) § =65, (ese)d =es (es82)d =es,

(946‘3)(;L =&,

(6791)8’:84, (6’762)& =€, (6763)J:e6,

+cyclic. (2.20)

For values of / other than 0, there are similar rules to (2.20),
with differing signs that can be generated by inner automor-
phisms of the algebra. The space J#°. provides an inequiva-
lent set obtained by the opposite convention for the sign of
multiplication rules involving e;.

It is easy to verify'® that the basis set
pi=ePe;P, (0=+1), 220
where p & =P P, satisfies
PP =8 0u0 yp 7 (2.22)
and that any element of C, can be represented as
a=3 Kj@pj,
fier

where

K@= plaps (2.23)
k=0

We have, so far, discussed right multiplication of the vectors
of #° by the “scalars” aeC,. We shall, however, also admit
left multiplication; since the scalar product is not defined to

be linear under left multiplication by elements of the Clifford
algebra, these elements act like nontrivial operators. We pos-
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tulate that these operators are totally linear (verifiable in
finite dimensions):

p-4:a(fb)=(af)b,
where a, beC,. Symmetric idempotents in C; in left multipli-
cation satisfy all of the properties of the operator valued pro-
jections discussed in connection with (2.6) and, in fact, be-
long to this class. Since P__ are invariant, we shall also
postulate h

p.5:P f=fP e,

and, in what follows, we shall work entirely in the subspace
#, and suppress the index o=+, unless otherwise stated.

Let us define
7
fi= 2 PufP (2.24)
k=0

and therefore
f= Zf il i
ij
It then follows that

()= p ;(fri8 1)

ijk

(2.25)

= 2 p KAL), (2.26)
ij

since

K (f8))=Ypif&pr;
1
=§I‘,(fp &P j1)

= Z (PSP P i ngr)’

Lk

which verifies (2.26). Equation (2.26) provides a construc-
tive realization of the algebra-valued scalar product (f,g).

An operator 4 in #° may, among other things, multiply
a vector f'by a scalar a€C; on the right, i.e., Af = fa. This is
not possible for a totally linear operator unless a is in the
center of C; (Jor E,) since otherwise A (fb ) = fbas~fab;
Vbe C,. A bounded totally linear Hermitian operator on #”
i.e., satisfying

A (b)=(4/)b,

(fAg)=(4fg), (2.27)
has a spectral resolution of the form"
A= JxldP D, (2.28)

where the P (1) are a totally linear spectral family. It is also
possible to consider a theory in which the Hermitian opera-
tors are linear only over the reals, and satisfy the weaker
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condition

tr(4f,g) =tr(f,Ag).

It was shown in Ref. 12 that a Hilbert space /" in which the
scalar product is taken to be tr(f,g) (real), and for which the
Hermitian operators satisfy (2.29), is isomorphic to a real
Hilbert space. The linear manifolds relevant to a quantum
theory in which Hermitian operators satisfying (2.29) are
admitted as observables are closed over the reals.

(2.29)

A theory in which only the totally linear Hermitian op-
erators are admitted as observables appears in the Hilbert
space % as a quantum theory with superselection rules
indexed by the minimal right ideals.!

We have so far considered two extreme algebraic re-
quirements: (i) that the linear manifolds corresponding to
the quantum lattice be closed only over the reals, resulting in
a real Hilbert space and “‘observables” that are linear over
the reals, and (ii) that the linear manifolds corresponding to
the quantum lattice be closed over the full algebra of scalars
C; to the right, resulting in an algebraic Hilbert space over
C.

Giirsey and Glinaydin' have argued, however, that op-
erators linear over the complex field, such as occur in the
unitary representations of Lie groups, and the extraction of
the complex subalgebra itself, are important in the structure
of gauge field theories of the type we are considering. The
construction of tensor product spaces linear over the full
algebra, or a non-Abelian subalgebra, furthermore, appears
to be very difficult”’; the use of a complex subalgebra is, in
this sense, maximal. Giirsey and Giinaydin'® suggested, in
the context of the algebra of octonions, that complex-valued
wavefunctions, linear over a complex field defined as a sub-
algebra of the full algebra, be used. We shall adapt their
suggestion to the framework of the Hilbert space over a Clif-
ford algebra, selecting the subalgebra C(1,e,) of C,, generated
by 1 and e,, which is isomorphic to the algebraically closed
field of complex numbers. The algebraic Hilbert space #°
can then be (somewhat more weakly than for %", ) embed-
ded in a Hilbert space /%, with scalar product linear over
C(1,e,), for which tensor products can also be consistently
defined.

We wish now to construct a Hilbert space for which the
scalar product is linear, and linear manifolds are closed, over
€(1,e;). To obtain a systematic procedure for constructing
scalar products suitable for certain classes of linear mani-
folds, we consider the orthogonality definition 2.1 again. We
assert that if

tr((£,g)a)=0

for all @ € C;, then fis orthogonal to g. In particular, (2.30)
implies that

tr((f,g)p,) =0

(2.30)

or
0:2 trK /‘[((ﬂg) )p k/p ij
ki

:Kﬁ( (£8)),
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hence (f,g)=0. It is furthermore clear that if (f,g) =0, then
(fa,gb )=0 for any a,b € C;, and therefore the algebraically
closed linear manifolds generated by f,g are orthogonal. On
the other hand, if we define orthogonality by (2.30) with a
restricted to the real multiples of the identity, then we obtain
the scalar product of the real Hilbert space 5, i.e., we say
that f'is real orthogonal to g if

tr(f,g)=0.

It is not true that Eq. (2.31) implies tr((f,g)a) =0 for every
aeC,.

.31)

Let us now define complex orthogonality with

Definition 2.3: fand g are said to be complex orthogonal
if tr((£,2)2) =0 for all z € C(1,e,).

Itis clear that the linear manifolds generated by f,g, and
closed over (i(1,e,) are complex orthogonal if fand g are
complex orthogonal, since
tr{fz,gz" ) =tr(z*(f,g)z") = tr({f,g)zZ*) = tr{{(f,g)z") =0, when
2,7, and z” =z&* € C(1,e;). Hence the scalar product of
Definition 2.3 is suitable for the construction of a Hilbert
space with closed linear manifolds defined over C(1,¢,).

Since every z € C(1,¢,) is of the form a + fe; (o, real), it
suffices for the definition of complex orthogonality that

tr((£,g) =0,
tr((f,g)e;)=0. (2.32)

We shall now show that the requirement (2.32) is equiv-
alent to the scalar product given by Giinaydin.'

From (2.26)

tr(f.g)= AZ (f ki 8 ki (2.33)
and |
tr((f,g)e-) =; (f o8 1) tr(p €1)- (2.34)
ij
According to (2.21)
tr(p,e;)=tr(e Pyee;)
=tr( P e ee;)); (2.35)

to evaluate this expression, we may use the multiplication
rules (2.20). In fact,

- L]
Pye eie, =P e e:)e;

=Po((e;e7)oe ,')05

and therefore (2.35) vanishes unless (j,7,i) are in the same
quaternion subalgebra of (2.20). A simple calculation yields

tr((f;g)e7)22[fk0’gk7)“(fk7’g x0)
<

+ (118 ka)—(fra8 k1) + (128 ks)

—(frs8x2) +(f 138 x6) —(f 68 13) 1- (2.36)

274 J. Math. Phys., Vol. 20, No. 2, February 1979

We remark that (for each value of the index &k ) (2.33) isinvar-
iant under SO(8), and (2.36) under Sp(8); the symmetry of
the full scalar product (2.32) is therefore SO(8)
nSp(8)=U(4). To make explicit the identity of this scalar
product with that of Gunaydin,'* we write the vector repre-
sentation (2.25), with the help of the multiplication rules
(2.20), in the form

£=3 fiePe;

=1\Z € Po [(fro—Sfrre)—(fra +fra)es

—(fra +frsener—(f iz +fe€0es]. (2.37)
Let us call

'/’,6 = frxo —firen

wﬁ = _fk(z _f‘ka+3e7’ (238)
so that

3
f:ZekP0(¢é+E w:\l’e(l) (239)
k a1

Note that, for f— fz,

vE bz, ¢k —syhzx (2.40)

In terms of the definitions (2.38), the two parts of the scalar
product (2.32) are (y corresponds to g)

tr((£,8))

=3 [Recwbrty+ 3 ReCulwty | (2.41)
and
tr((f:g)e7)

=2 [_Im('[’é”(éH il Im(l//f;,rf,)] (2.42)

where we have used the fact that scalar products of vectors of
the form (2.38) belong to C(1,e,) and have adopted the usual
terminology for real and imaginary parts (complex conjuga-
tion is the star operation of C;). The condition that (2.41) and
(2.42) both vanish, i.e., that fand g are complex orthogonal,
can be more concisely written if we define

(£.8). =tr((f,g)) —ertr((f,g)ey) (2.43)
and require
.8).=0, (2.44)

Combining (2.41) and (2.42) according to (2.43), we obtain

(8.
3
=S (hx &)+ > (xavh) |-
k

1R |

(2.45)

For each k,* the scalar product defined by (2.45) is precisely
that given by Giinaydin.'* We note that since tr[(f,f)e.]=0,
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FOe=tr(f =1, (2.46)

and hence the topology of 7, is the same as that of 77°..

Ili. COMPLEX LINEAR OPERATORS

It follows from Egs. (2.40) and (2.45) that the scalar
product (f,g). is linear over C(1,e,) in the sense

(fg2) .=(f8) .2

(f28) . =2*(f9) . (3.1
for z € C(1,e;). It is furthermore clear from the discussion of
Sec. II that projection operators defined on linear manifolds
closed over C(1,e;), and with orthogonality determined by
the scalar product (f.g),., are linear operators with respect to
C(1,e;). In addition to operators linear over the reals, or over
the entire algebra of C;, we shall therefore study a third type
of linearity, that of operators linear over C(1,e,). Such opera-
tors, which we call complex linear, satisfy

A(f2)=(4f )z (32)
for z e C(1,e,).

As we have seen in Eq. (2.25), every f€ /°, has the
representation

fzifijpij
i

and the most general action of an operator linear over the
reals (see Appendix A) is (for 4 real-valued)

Af= z QIIj,kaklp i (3.3

ikl

Reorganizing the sum on the right-hand side according to
the procedure used to obtain Eq. (2.39) from (2.37), we ob-
tain (for A j; complex-valued)

3 * 3 4
A=3 e P [l aiog + 3 (Aol
ki a=1

3 " - *
FAGY )+ Y | AU i+A %Y

a=1
3 3 *
+ 3 (AL Ayl ]e] 3.4
A=1

whereA 4, correspond toindependent linear combinations
of the (real) operators 2, ,, over C(1,e;), and the ¥ 5, ., are
the complex valued functions representing f as given in Eq.
(2.38). With the help of Eq. (2.40), for z € C(1,e,), we obtain

v * 3 ,
APz=Y e P, {A Mol A bz 3 (AK YLz
ki a=1
AR 3] Al Aty

3
+s (AKL gLy ARyl oo ]e] (3.5)
=1
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and

3 x 3 9
U3 e P Al +a U+ Y (4lvlee
ki a=1

3 d *
vafytar S| Athpleratiol e

a =1
3 Kkl *
+ 3 (A5t A uh ) ]e] (3.6)
F=1

Comparing Egs. (3.5) and (3.6), the requirement (3.2) for
complex linearity is satisfied for the operator A4 if and only if

AN =0, 4K —o,
Ak =0, Ak —0. (3.7)

The vanishing of the transitions listed in Eq. (3.7) corre-
sponds to superselection rules imposed on all operators lin-
ear over C(1,e;) and, in particular, on self-adjoint operators
of this type. We see, however, that there remain components
of operators linear over C(1,e,) on the entire space that ap-
pear to act antilinearly, in the manner of Wigner’s corepre-
sentations,” on the subspaces #%, #°, over which we have
decomposed 5, by means of the representation (2.39) (the
antilinear structure of the theory is reformulated in a simple
formal way in Appendix B). The general complex linear op-
erator therefore has the action

3
kI

a=1

3 3
+ X (dao + > Agpdpleq| (3.8)
ey

a=1

Following the interpretation of Giirsey and Giinaydin'®
for the octonion Hilbert space, we take ¢/, to correspond to
states in the “quark” or “unobservable” sector and ¥}, to
states in the “leptonic” or “observable” sector. Equation
(3.8) indicates that a complex linear operator can act antilin-
early on the unobservable space and admit a transition from
that (conjugate) state to the observable space, and converse-
ly. From the point of view of field theory, the operators 4 &/,
and 4 X/, behave like currents composed of lepton and quark
fields.

Saclioglu'® has pointed out that Nambu’s suggestion,?’
based on the invariance of a massless fermion Lagrangian to
Pauli-Giirsey transformations, of the existence of diquark
currents (which then implies the existence of leptoquark cur-
rents), when applied to the generators of SU(3)_.,

X SU(n)g,y. charges of the usual type, results in an algebraic
structure which is most economically accommodated in the
framework of the exceptional groups. Equation (3.8) shows
that the leptoquark transition operators occur naturally as
pieces of operators linear over the complex subalgebra
C(1,e;). The self-adjoint operators of this class would be ob-
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servables if complex linearity alone were sufficient to insure
that no superselection rules are violated.” It appears, in any
case, that operators of this type must be accommodated in
theories which attempt to unify weak, electromagnetic and
strong interactions.'**:2!

Furthermore, the linear operators corresponding to the
U(4) symmetry of the scalar product, as noted in the remarks
following Eq. (2.36), could not be realized in the absence of
these terms {the maximum symmetry transformations avail-
able would otherwise be U(1) X U(3)]. In Sec. V, we shall
show that the generalized phase algebra 91 C C, which com-
mutes with e; acts on the complex wavefunctions exactly as
indicated in Eq. (3.8).

We conclude this section with some technical remarks
on the properties of complex linear operators. From the defi-
nition of the scalar product (2.45), we define A', the adjoint
of 4, according to

(fAg) .=(419) .

in the same way as for the usual theory of complex Hilbert
spaces. It follows that (these operators are complex-valued)

(ANGa=Ass (AN =40.,

@Noa=A g ANep=AF],

(3.9)

(3.10)

where the adjoints defined on the right of these relations are
determined by complex scalar products among vectors from
the subspaces %, #,, and the domain and range subspaces
are indicated by the mdlces on the left-hand side. Symmetric
operators therefore satisfy

ki __ 4 Ikt ki Ikt
AOO_AOO’ A(IO AOa’

Ab=Au Al=Ap. (.11
We record here also the form of the products of two
operators linear over C(1,e,):

(BA )é(l):z( AmA m[+zBI\mA :x(;*)’

m

(BA).= z(Béa"AaHZBé;g"Az?f:),
m B

(BA aO_Z(B‘I;BIA&[*+ZBA/nAInl)

(BA )ﬁ},:}:( ,k,glAg;,"JrzBf;)"A ;",’,) (3.12)

m

IV. STATES AND THE ALGEBRA OF PHASES

As we have shown previously,'’ the algebraically closed
linear manifolds of /#°, form a complete, weakly modular,
orthocomplemented, atomic lattice, and this structure can
therefore be embedded in a Hilbert space over a field @."* In
this earlier work, @ was chosen to be the basic field over
which the algebra was defined (the reals in the case of the real
C, we are presently considering). Admitting as observables
only operators linear over the entire algebra, we found that
the embedding results in a Hilbert space over @ with super-
selection rules that correspond to the primitive idempotents
of the algebra. It was furthermore found that the pure states
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correspond to vectors multiplied (in the sense of a general-
ized phase) by the corresponding minimal right ideals over
the full algebra (elements of unit modulus).

In the present work, we shall admit as the smallest lin-
ear manifold a vector multiplied by quantities from C(1,e,);
pure states therefore correspond to rays over C(1,e;). The
further resolution of these manifolds would imply the exis-
tence of observables which are sensitive to the global com-
plex phase of a wavefunction. We shall therefore embed the
Hilbert space over C; into the Hilbert space 5%, with scalar
product (f,g)., and linear manifolds closed over C(1,e,).

We may then define “‘states” in terms of measures on
the complex linear closed manifolds. There is, however, a
larger algebra which may be applied to the vectors of this
space, and we must therefore extend the notion of a state to
measures defined on manifolds closed under an algebra
N C C,, larger than C(1,e;) (as we shall show, ) cannot be the
full algebra C; since there are elements of C; which can alter
the structure of the minimal invariant subspaces). The pure
states, evaluated on linear manifolds closed under this larger
algebra, will be invariant under the action of the norm-pre-
serving elements of 2. It is precisely such an invariance
which is characteristic of the fundamental idea of non-
Abelian gauge groups,' and we therefore identify % with the
algebraic structure of a gauge group. It is then consistent to
define an observable as a self-adjoint operator (with respect
to a scalar product linear over %) which is linear over ¥; the
expectation value of any such observable is independent of
the choice of norm-preserving multiples from 2 on the vec-
tors involved.

The conditions defining the algebra 21 C C, follow from
the requirement that the notion of a state can be extended
from a function on the projection operators corresponding to
linear manifolds closed over C(1,e;) to a function on the pro-
jection operators corresponding to linear manifolds closed
over N. We shall follow the procedure established in Ref. 13
to make this requirement precise.

To achieve an embedding of %7, into #°,, we seek
orthogonal projections in the algebra which will generate
subspaces that are closed under C(1,e,), the primitive idem-
potents for minimal complex manifolds. These idempotents
will be invariant under the action of operators with sufficient
linearity (linear over ) and will therefore generate super-
selection subspaces. Starting with the primitive idempotents
for the real field [defined by Eq. (2.14)], we can find the
complex primitive idempotents as follows. For fe .7,

SPe:=fer(e:P e )

Pk;h k:l,2,3,
— Pk 3 k:4’5’69 41
e, k=7, @D
P7, k:0
Hence
S +P, De=fe P +Py 3), k=1,2,3,
f(Po‘FP7)97:f07(Po+P7 ); (42)
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and therefore the smallest linear manifolds invariant under
C(1,e,) are the subspaces corresponding to

A

Pa =ea130e;, a=0’],2,3, (43)
where
I;o=P0+P7
=4 —eere I —eserer). (4.4)

The last equality may be verified by multiplying out the fac-
tors of Egs. (4.4) and (2.13) (conjugating the latter with e, to
obtain P;) and using Eq. (2.11) for the subspace %, = #°P..
The structure of P, is due to the fact that there are just two
algebraically independent, symmetric, commuting elements
of C,, e,ese,, and ese;e,, that commute with e, (in 77°,). The
spectral representations are found by noting that /P,

k =0,1,...,7, are eigenfunctions of these operators; since
they commute with e,, the (0,7), (k,k + 3), k = 1,2,3 sub-
spaces are degenerate, and hence theP are the spectral fam-
ily. Finally, Pe,e.e, = — B, for example; congugatmg with
the e, we obtain similar relations for all the P,. Since

3 ~

2 Pa=1, (4.5)
we find
eerer=—Py—P,+ P+ P, (4.6)
and similarly ) A )
ese.e,= — P+ P, —P,+ Py,
eqe.e,=— P, +13, +I;2—133. 4.7

The operator e.e-e, is not independent of the other two, but
we record its spectral representation here to make explicit
the spectral content of all of the operators associated with
multiplication rules [Eq. (2.20)] involving e,. In particular,
note that the three multiplication rules involving e, in Eq.
(2.20) are valid in the subspace corresponding to P,

Gleason® has shown that for an irreducible system of
propositions realized by the projections P,, of a separable
Hilbert space, real or complex but of dimension >3, there
exists a density matrix p for every continuous state* such
that

oM )Y=Tr(pP,,), 4.8)
where by Tr we mean a trace over the full Hilbert space as
well as over the algebraic indices. We have recognized that
the linear manifolds, closed over C(l,e;), of 7, do not form
an irreducible system of propositions, since &, decomposes
into a direct sum over the superselection subspaces #°, cor-
responding to the minimal subspaces invariant over C(1,e,)
(if one were willing to accept the further resolution of these
linear manifolds to the real field, the minimal subspaces
would be 77, =#".P,, k=0,1,..,7)." In each of the mini-
mal subspaces #°,,, we may express the state (4.8) as a func-
tion of the linear manifolds [over C(1,e,)] in that subspace, as
0 M=F YEUEP yf O o (4.9)
where >0, Z,97=1,and f§ € #°,. We are now in a posi-
tion to state and prove the principal result of this section.
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Statement 1: There exists a maximal (star) subalgebra
A C C, such that to every M & there corresponds a linear mani-
Jold M closed over 9, which is a proper extension of M &, for
which Py f* =P,, S ,Jr e, and contained in every M
there is a complex M ? of whlch M is a proper extension of this
type. There are eight solutions for the algebra 9.

As a consequence of this result, we may assert the
following:

Statement 2: States w(M ) can be defined on the set of
linear manifolds M closed over %; the pure states correspond
to vectors multiplied by the right ideals of % generated by the
P,

In the following paragraphs, we shall prove Statement 1
and define the structure of the algebra . Weshall then givea
proof of Statement 2.

Let M 2 be spanned by g, ﬁa, 2 ﬁa,--- over C(1,e,), and let
M be the closed linear extension of M ¢ over ¥, i.e., M is
spanned over ¥ by the same elements. For each f; for which
the £¢ of Eq. (4.9) is given by f& = £, P_, there is a unique
decomposition into a part in M and a part orthogonal to M in
the sense 12

fi=guth
gn=8P 8 +g.P 8+, (4.10)
and
tr((h,g,P,)m =0 all ac? (4.11)
Now,
fe=fP,
=gMﬁa + hﬁa
=gP aP_ +gP a.P +-+hP, (4.12)

is a unique decomposition of /¢ into a partin M ¢ and a part
complex orthogonal to M & provided that

PaP =zP,, zeC(le), all acd, (4.13)
and

(hB,gP,). =O0. (4.14)
The last condition requires

tr(hP,gP) = tr(hgP,) = 0

tr(hP8;P Je) = tr(h.g P Ye) = O (4.15)

both are satisfied as a consequence of Eq. (4.11), since A
must include C(1,e,) if M is a proper extension of M . It then
follows from Eqs. (4.13) and (4.15) that

tr(@y P h P )a) = tr(g,,h )P ab,)
= tr{(gaphP)2) = 0
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and hence

Py(fiP)=Pyfi=guP, =(PMfi)ﬁa?
(4.16)
i.e., Py is linear over the P . In fact, P - must be contained
in % if operators linear over ¥ are to leave the superselection
subspaces generated by the P, invariant. Furthermore,
from Eqs. (4.12), (4.13), and (4.16), we see that for every M &
there exists an M closed over 9 such that

PM;'f?szf?'

For the second part of Statement 1, let us take for M the
closed linear manifold spanned by g,,g,,--- over 21 and for M ¢
the elements of M multiplied on the right by P . Since
C(1,e;)C Y, and the complex numbers commute with the
P « M & is clearly closed over C(1,e;). We must now demand
that the extension of M ¢ by right multiplication with ele-
ments of I fully reconstruct the manifold M, i.e., that (linear
combinations of)

{ glalﬁaayl +gzazﬁaa£ +-}
overalla, aj'. € 9, is equivalent to
{ glaI +gza; + -}

over all a; € 2. We therefore obtain the following condition:
For every a,a’ € U, and for any =0,1,2,3,

aP ,a' =a" 4.17)
belongs to U, and for each a, all N is spanned by sums of
elements of this type.

The first part is equivalent to imposing that 2 be an
algebra, since we have already admitted P , € % (and
2 ,T13 « =1). Theform (4.17)is a convenient starting point for
our demonstration, however. With Eq. (4.13), it serves to
completely characterize the algebra .

The most general structure of the ﬁa,ﬁﬁ part of an ele-
ment of C; is [we write a;; €R for the K,{(a) of Eq. (2.23)]

Paan =a.fPop +aq . 3Pa + 38

+a,5: Pap+3 T %135+ Par3p+d

(4.18)
where a = 0,1,2,3 and the index a + 3 is to be read as 7 for
a = 0. With the help of the multiplication rules (2.20), valid
to the left or right of P,, Eq. (4.18) can be rewritten as

ﬁaaﬁ[)’ = Pap(lop — €805 4 3)

+Pu i35 Bt aprstelaig) (4.19)

In particular, the diagonal components of Eq. (4.19) are

ﬁaaﬁ(x :Pa(aarz _e7aa‘a+3) +Pa+3.a+3
(4.20)

X@y 3043+ €8y 4 34)
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The general element of C;, restricted to the 5%, subspace, is
therefore parametrized by two complex numbers, and does
not satisfy the requirement (4.13). Hence % cannot be all of
C,. For example, one sees that PP, is not simply propor-
tional to P,=P,+ P,, which generates one of the minimal
subspaces invariant under C(1,e;), but has the form

Pz, +Piz,.

The restriction implied by Eq. (4.13) requires that for
ac,

a 4.21)

Qe = g43,a+3 aa+3= " gi3a-

Since a” in Eq. (4.17) must also satisfy Egs. (4.21), we make
use of Eq. (4.18) to write

PpaP a'Py=Pya"P, (4.22)
explicitly; imposing the constraint (4.21), we obtain
Apa@apt8pay @ arip

=320 0py3 TE813a138 013543 (4.23)
and
a/3+ J,rza af3 +a B+3a+3 a,. 1 3.5

=—(0p3a9 053 T pas 38 ar35+3) - (4.24)

Equations (4.21), (4.23), and (4.24), with the requirement
that it be a (star) algebra, contain all of the information nec-
essary to define 2.

In particular, the subalgebra of C; for which
{agpi3)={a,,15)=0 satisfies Egs. (4.21), (4.23), and
4.24)if

4 Ba - a 13843

(4.25)

§aﬁ:

Ap,3a+3 a,p

is a universal constant (with £, = +1). Since the right-hand
side is then equal to £ 4 , it follows that

€ pab ap=1.

Furthermore, this subalgebra is also a subalgebra of 2 when

é/}]g ;'(r:§ Beos (4.27)

since for such a,a’

(4.26)

aa'= Z Apy3y+38 y13as 3( §/37/§ yaP Ba +p B4 3a+3 )
afy

Returning to the general expressions (4.23) and (4.24), let us
choose a’ to belong to the subalgebra of A for which
{a,5,3)=1a,.33}=0 Then, for generala € ¥,

Apaap= g1 3a+3% 03543

(4.28)

Api3ad ;Iﬁ =—Adpq3d Lt +3.8+3
Hence, Eq. (4.25) is valid in the general case of @ € %; from
Egs. (4.28) it also follows that

Apardy™= —& ap@ B ria (4.29)

Let us now consider Eqs. (4.23) and (4.24) for both a,a’ gen-
eral elements of ¥ satisfying Eqs. (4.25) and (4.29). Then
[with Eq. (4.26)] it follows from Egs. (4.23) and (4.29) that

L.P. Horwitz and L.C. Biedenharn 278



(4.30) Eap=1 Ep=tl. (431

The conditions (4.25) and (4.29), with (4.27), (4.30), and
' (4.31) define a closed algebra. For a,a’ satisfying these
conditions

§ af3 =§ Ba
and from Egs. (4.24) and (4.26) that

ad'= 2 [P aﬁ(a ay@ 48 +a ay+34 Y+3/-'3) +paB+3(a ar@ yB+3 +a ay+32 y+3,ﬁ+3)
affy

+Par38(8 03,8 8+ ai3y138,138) YPar1pr3(@ays @ pis A aisyi3d re38+3) 1

= Z [pa/}(gaﬁa a+3y+3% 43 ,B+3"§ ya oy 3,449 y+3.B)“Pa.ﬁ+3(§aBaa+3,y+3a y+3.8 +¢& ya¥ o134 y+3,ﬁ+3)
afy

+Pui3p(E B8 a3 y3prytaa,3,430 y+3,ﬁ)}+ Paripis(—€pa a+3y@yi3ptaai3,43a y+3,/3+3) ]. (4.32)

The coefficient of p,, , 5 5, 3, when multiplied by £_;, becomes equal to the coefficient of p,,; similarly, the coefficient of p,, , 5 4,
when multiplied by £, becomes equal to the negative of the coefficient of p,, 5, ;.

The terms of Eq. (4.32), with index y fixed, correspond to af’,;z’. It is clear that sums of such terms, e.g., 3 ,ajls,,a; span the
entire algebra ¥, since the sum over 7 in Eq. (4.32), with suitable choice of a J-,aj'., can be effectively replaced by the sum over/[e.g.,

define (@), = 4,,, and similarly for other components].

Separating out explicitly the index O from 1, 2, 3, Eq. (4.27) may be written

(4.33)

There are eight solutions, comprising four inequivalent types. With Eqs. (4.21)(§,,, = + 1, &, = + 1), representatives of these

§0a§0[3 = §aB’

§¢17/§y6 = §aﬁ'
types are
QI,”: §Oa:+1’ §ab’:+1
A..: §o1:§oz:+1, §03:“]>
91,42 §01:§022_‘1: §03:+1,
A bo=En=En=—1, §aB:+1

There are three solutions of type 1, with one of the &, set
equalto — 1 and three solutions of type 2, with one of the £,
setequalto + 1. Thereisonly one solution of type 0, and one
of type 3, as given in Egs. (4.34).

The conditions (4.25) and (4.29) imply that the £_,P,
part of every element of % {in the sequel we shall refer to
properties of all of the algebras specified by Egs. (4.34) as
those of the algebra 2, unless otherwise stated] is parame-
trized by a single complex number. From Eq. (4.19) one sees
that

PaPs=(paplaptParipriN@aiipstea, )
(4.35)

This result is a proper extension of Eq. (4.13) to the nondia-
gonal parts. We shall discuss the structure of the algebras 9,
where £ stands for the sign distribution of £ ,,, =1,2,3, in
detail in Sec. V.

We remark that the solution of type O corresponds to
the largest subalgebra of C, that commutes with e,.

Since
A~ 3
€= z Pae7: Z (p a+3a P a,a+3)’ (436)
a=0 a=0
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(type 0),
Eo=+1, Sn=£n=1 (type 1),
Eu=t1, fu=gu=—1  (type2),
(type 3).
(4.34)
we see that fora e C,
3
ae,= Z (a i+ P ia =49 P [,a+3) ’
fx=0
3
e.a= Z (a aifP a+3,i — A a13,iP ai) ’ (437)

La=0

Comparing corresponding terms, one finds that for ¢ and e,
to commute, the conditions (4.25) and (4.29) must be valid
with £, =& .5 =+ 1. Therefore, there are elements of each
9. (type 1,2,3) which anticommute with e;. In the next sec-
tion, we shall show that there are other forms for the imagi-
nary unit (also associated with the direction 7), each of
which commute with one of the algebras I, and provide an
interpretation.

We now turn to a proof of Statement 2, valid for any of
the solutions given in Egs. (4.34).

Let M correspond to M 7, in the sense given in State-
ment 1. Then

@ M)=Y v (fT.Pyuf7) . (4.38)
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For each M there exists an M ¢ in &%, for which this
correspondence is valid, and therefore w (M ) is defined over
all M closed over 2.°! Since w_ (M) is a state,

O(M)=3 4 10 (M)=3 A 75 (fEP suf ), (4.39)

is also a state if 4 , >0, 2 A ,=1. From the definition (2.43)
of the complex scalar product and the fact that the P com-
mute with e, (f?,P ,,f%), =0 for 4. Hence

w(M)=Z/3 (A7 VA gy VS TP 2SD).,

=Z,ui(fwPMfi)c: (4.40)

wherey, =2 A ¥ § >0, Zu,=1,isastate of the form given
in Eq. (4.8).

To construct a pure state, we utilize the converse of the
Gleason theorem in the form given by Magkey.32 Let M, be
the closed linear manifold defined by { f;, P ,a}, forae ¥,
and suppose that w,(M,) = 1. Then, since [|f;|[*=1, it follows
that

0= gt I~ P o) f il

or
Pyufi=fi=fiP.a,. (4.41)
Substituting this result in Eq. (4.40), we find
0dM)=F p (P 8,P o P o)
=3 1 (tr(fo, P of) PoaialP ). (4.42)
Now,
Vil =t P o o Poy)
=) Pensip . (4.43)
According to Eq. (4.13) (aa* is symmetric)
PaaP,=n7P, (4.44)
7% is real and nonnegative. Hence (¢ =0,1,2, or 3)
WA=t (fife) P o)
:777[(/;)2/(‘)) a,a + (ﬁhﬁ’) 3,04 3]' (445)
We define f, to satisty the relation
(f(’xﬁ) e + (ﬁ'xﬁ)) PRI et 1’ (446)
and hence, if |[fi|I*=1,
e =1 (4.47)
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It then follows from Eqgs. (4.42), (4.44), and (4.47) that

CL)O(M)=Z,LL,-tr((ﬂ)aPMﬁ)) ﬁa)

=tr(f5.P mf5) - (4.43)

If we had not chosen M, to be { £, P ,a}, but chosen {feal
instead, we would have obtained a mixture over all of the a’s
in Eq. (4.48). ] The state @(M) is invariant under the
replacement

fi=fPo —~fPa
for the a € ¥ which preserve the norm, i.e., a satisfying
P aa*P =P . (4.50)

(4.49)

The transformations (4.49), leaving pure states invariant, are
therefore analogous to the phase transformations of a com-
plex Hilbert space. The quantities P ,a of the minimal right
ideals P , A of A [satisfying Eq. (4.50)] play the role of a
generalized phase which could be utilized to construct local
non-Abelian gauge transformations. We shall call 9 the gen-
eralized phase algebra.

V. SUPERSELECTION RULES AND
SYMMETRIES

For an operator A linear with respect to 2 the expecta-
tion value calculated with an arbitrary vector f€ 7, in the
domain of 4 decomposes as if the state were mixed, i.e.,

A =t f4f) =3 (£ AL, (5.1)
where f* =fP _ € . In fact, we shall adapt the proce-
dures of Ref. 13 to prove:

Statement 3: If all observables belong to the class of self-
adjoint (with respect to a scalar product linear over 2) opera-
tors linear with respect to %, then the embedding of the Hilbert
space ¥ . (as F77y, with manifolds linear over the generalized
phase algebra) into 7 results in a representation which is
reducible with respect to the primitive idempotents P ,, i.e.,,
displays superselection rules for the subspaces 7 ,,.

We shall proceed by first making explicit the structure
of the algebras 2, and defining a scalar product appropriate
for the consideration of operators linear with respect to 2.

From Eq. (4.35), we obtain for the algebra ..., defined
by Eq. (4.34), for ¢,/=0,1,2,3,

P(raPH =(p ap TP i 3p4 Oa, papey e 3./1)-
(5.2)

With the help of the multiplication rules given in Egs.
(2.20), one obtains (a,5=1,2,3, or a=5=0)

Pap +p<1+3,/3+3 =e rlPUeB+e7e “Poeﬁe 7
:e(,Poe;;, (5.3)

and (@¢=1,2,3)
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. x
p0a+p7,a+3 =P°ea +e7P°eae7

=(P,—P) e, (5.4)

The algebra 9L.., is therefore generated over the complex sub-
algebra C(1,e,) according to Egs. (5.2), (5.3), and (5.4) by

p;/3++'-eaﬁoe;3’ a,ﬁ=1,2,3,
p&l++—(P0—_P7) e;) a:1y2;3)
poot =Py, (5.5)

As already pointed out, ¢; commutes with 9,,, and hence
with these p.;* *. The general element of ... has the
representation

3

a5

af3=0

Z+ b+

aﬁpaﬁ s (56)

wherea, ;€ €(1,¢,), and the,ojﬁ+ * satisfy (2,8,7,6=0,1,2,3)

S+ b+ + ot

pas’ TP =800

pL =P, .7
It is evident from Eq. (5.6) that Egs. (4.13) and (4.17) are
satisfied, i.e.,

ﬁ:la};a :aaaﬁa’ aaa€C(1,€ 7)1

and
P A R
aPua —Eaﬁaaarpﬂr 4
where for arbltrary a,a'e QIW, aP 2" € A,.., and there exists

a set of a;,a; such that EjajP a —a” for every a” € ...

We now turn to the general case, and study the algebras
9, (types 0,1,2,3) simultaneously, with the help of:

Lemma 3.1: The algebra , is characterized by the fact
that it commutes with

3 .
65: EﬁOaPt1e7' (58)
a:=0
The set of imaginary unitse$ [(e5)=—1,e5*=—e$ ] are

linear combinations of e,, e,e, e,e,, and e,es.

The products e.e;, e.¢e,, and e.e; all form +e; on Ehe
(right) subspace generated by the projection operator P,, and
e; with various signs on the other 5#°,. In fact, according to
Eq. (5.8) e§ takes on the value £,,e, on each of the ¥,

We may interpret this phenomenon as follows. Since
each of the #”, are (according to Statement 3) superselec-
tion subspaces, no observable can connect them, and the sign
of the imaginary unit may be chosen independently in each.
The eight solutions e § correspond to the eight ways of mak-
ing this choice (up to an over-all sign). The relation between
each of these possible solutions for the generalized phase
algebra then corresponds to a set of “time reversal’’ transfor-
mations, taken independently in each of the . The alge-
bra ¥ is therefore unique up to the choice of the sign of e, in
each superselection subspace.
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We now prove the Lemma 3.1. Following the method
used in Egs. (4.36) and (4.37), we note that (§oo=+1)

3
=Y foa(PaiiaPaatd)s (5.9)
a=0
and hence
3
ae§== Z gOa(aia+3pia —da iap ia+3)’
a=0
3
8§ Z gOa(aalpa+31'—aa+3,ipai)' (510)

Comparing corresponding terms, we obtain the relations
[Egs. (4.21), (4.25), and (4.29)]

Apar3=—6aplpisas

Apa =Capl piiats

where & 5 =£ o, £ o5, characterizing the algebra ;. From
Egs. (4.4), (2.11) (defining 5#°.), and (4.3) [or from Egs.
{4.7)], we find

=1l —ese:e;—eeqe —ese:62),
= %(I‘*’es&es —€4€1€| +ese7ez),

P,= %(14’669793 +e.e:€; —95676’2),

};3=%(1——€6€7€3+€4e7e|+ese7e2)~ (511)

The expressions (5.8) defining e § therefore all lead to linear
combinations of e;, e;e, e.¢,, and e,es. For the examples given
in Eqgs. (4.34) [note that tr(e.e ;7 ~ 7)=0]

e 7+ t+ e
e 7+ o= %(e7+e.e4+eze5—e3e6),
e; T =+ees
ey  T=ier—eei—ees—ee). I (5.12)

For the general case 1, we follow the procedure used
above for § =(+ + +) to find that ¥, is generated over
C( 1 ye7) by

/55/3:9 (P050a505+P7) e;,, af=123,
pOa—(PogOa P7)e(17 a=1,2,3,
Pho=PF. (5.13)

This basis satisfies the relations (5.7) as well. For example,
for a.B,7,6#0

ﬁiﬁﬁf»&zea(P0§0a§oa+Pv) e;je‘y(POé-Ong& +Py) 95

_IO’ . /3’371:7,
TleaPoboabos +P) €5 B=v,

and

ﬁiﬁﬁio:ea(P0§0a§OB+P7) e;;ey(PO§Oy—P7)

_10 B#v,
€ (P0§00 P7 Bzy .
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The basis elements p5,; therefore satisfy the relations (5.7)
and the representation (5.6) can be used for elements of %, if
pds"* isreplaced by p% ;. Algebraic manipulations are com-
plicated, however, by the fact that basis elements for which
§op= —l or §,,= —1 anticommute with e,. By replacing e,
in 4,5 by e §, however, one obtains a representation in which
the complex scalars commute with the basis. Since.

e 5P =& 0atPip (5.14)

with similar relations for right multiplication, it is clear that
the use of elements in C(1,¢ %), i.e.,

s =2 op+e5H ups (5.15)
A opr Hap € R, in the representation
a= Y2550, (5.16)

afd

corresponds to an effective alteration of signs of the coeffi-
cients u,; relative to those used in Eq. (5.6). Just as for L.,
Egs. (4.13) and (4.17) are satisfied for %, [one may use
C(l,e) or C(1,e$) ).

We shall now follow a procedure similar to that used in
Sec. I to construct a scalar product sesquilinear in 2. We say
that fand g are A-orthogonal if

tr((f,g)a)=0 (5.17)

for all a € L. Since a has the representation (5.16) (we sup-
press the designation £ in the following) it suffices that

tr((f’g)ﬁa/}) = 0’
tr((£,g)paper) =0

for every a,f. Let us define the scalar product as

(./;g) ?I=Zﬂ(f;g pABa) cp\aB’

(5.18)

(5.19)

where we shall use $ in the definitionn of the complex scalar
product in place of e; when dealing with the algebra % [for
£#(+ + +)), for reasons to be discussed below.

Clearly (f,2),,=0 implies Egs. (5.18). From Eq. (2.26)
we have

tr(fN) =[fII'=4 2 (8
on the other hand, from the definition (5.19),
W a=34Y (/) aa +) ar3arsls (5.20)
which is just ||f]|>. Hence the topology of 57y is the same as
that of 7. (or 7). Furthermore, conjugating the definition
(5.19), we obtain

(f;g) :‘[ = zfaﬂa(gﬁﬂaf) ¢

of

zzﬁﬂa[tr(gxfﬁaﬂ)_e7tr(g1fe7ﬁa,8)]' (521)

To restore the form of the scalar product, two operations are
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required in Eq. (5.21]. The basis element §,, must be inter-
changed with e, in the second term, and the basis element
outside of the brackets must be brought to the right. For the
algebra ... these operations are trivial. For the algebras 9,
E#(+ + +), compensating sign changes occur. If, however,
we use in Eq. (5.19) the following definition for the complex
scalar product [in place of Eq. (2.43)],

(fg). =tr(fig)— e5tr(fig e$),

these operations become trivial for the algebras 21, also. The
scalar product defined by Eq. (5.22) results in a Hilbert space
2, with the same properties as &%, for which

(5.22)

(f8) .. €C(l,e5). We shall discuss the structure of this
space later in this section.

Hence, we find

(9 ;I:(g!f)i’l' (5.23)
We now show that the form defined by Eq. (5.19) is right
linear, i.e., fora € %,

(fig a) y=(£8) 2,

and is therefore a proper sesquilinear form, appropriate for
the consideration of operators linear over .

(5.24)

Consider

(f;g a) An= Z (./;g ay&ﬁy&ﬁﬂa) claaﬂ
affyd

= Z (f;g a‘/ﬁﬁya) cﬁaﬂ' (525)

af3y

For ..., Eq. (5.25) is (due to the linearity of the complex
scalar product)

(fg A o= }ﬁ‘, (S8 Pya™ ) Pas™ "2,
aBy

Since right multiplication provides the following relation,

(f8) n.a= ;8 (/18 Ppat ™) cPar” Bysbrs” "
apy

(5.26)

=3 (f8 Pt ) Pis By (5.27)

ayd

linearity for ... is evident. The demonstration for 2, for
E5£(4 + +), is a little more involved, using a representation
of the forma=ZX a,;p5;, 4.5 € C(1,¢,), and requires keeping
track of an exceptional index set. Using, however, the scalar
product defined by Eq. (5.22) and the representation (5.16)
for a € %, the arguments leading to Egs. (5.26) and (5.27)
are immediately available; hence it is evident that Eq. (5.24)
holds in these cases as well.

Together with the conjugation symmetry Eq. (5.23),
these results demonstrate that the scalar product defined by
Eq. (5.19) [with, for convenience, the complex scalar prod-
uct Eq. (5.22) in case the algebra 9, is to be used] is a sesqui-
linear form.
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Having defined 7, in terms of the algebra % and the
scalar product Eq. (5.19), we may now consider embedding
H g into F°,, and complete the proof of Statement 3.

Operators linear with respect to %, satisfying on appro-
priate domains,

(fiAg)n = (Af.8)w,

are said to be Hermitian in 5%y, and have a spectral resolu-
tion containing projections on manifolds closed over 9."> In
the treatment of 77, as a Hilbert space over C(1,¢,) [or
C(1,€8); we shall suppress reference to the designation £ in
the following whenever parallel arguments apply], it is ap-
propriate to use projections into manifolds closed over
C(L,e)).

If M ¢ is a linear manifold closed over C(1,e;) (as in
Statement 1) in %°,, and M ? in ¥4 (B+#a), then

PP oys=0.

(5.28)

(5.29)
This relation follows from the fact that

Py f=hP e,

Pyg=n Isﬂ € g,
and hence

(PoiiPaarg) e =i Py Py

=(hP WPy,

which vanishes due to the fact that P o P 5 commute with e,
(and e$).

According to Ref. 12, the function f;(4) of a bounded
Hermitian operator 4 may be defined, where

[i(x)=max(x —A4,0)
for x, A € R. We now define the linear manifold
M(AA)=[g)f,(4)g=0, geF,}. (5.30)
By the procedure used in Ref. 12, it can easily be shown that

mean={) " 12,

where C is the bound of 4. Since #' =3 77, the unity
operator is given by

Z PM:’(A,/I)
a

for A > C, and again following the procedure of Ref. 12, we
find that

FAf) . = f AP sy ais e

(5.31)

(5.32)

Replacing /by f4g and using the complex Hermitian prop-
erty of the P .., ., one obtains

FAg) =3 f AP oys )8 o (533)
and hence
A= fAdPM,(M (5.34)
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is the operator form of the spectral decomposition of 4 in

7 . ThesumZX P, ., isaprojectionsinceeach termisa
projection and Eq. (5.29) is valid. The sum is furthermore
linear over ¥ since it corresponds to the projection into a
manifold {g} satisfying f,(4 )g=0, for g unrestricted in 7.,
and A is linear over % [so that £, (4 )(ga)=(f (4 )g)a, ae %]
Hence, Eq. (5.34)is also the spectral resolution of 4 in 77,
and the spectral family in 777, is

P(l):E Porricany

The form (5.34) explicitly exhibits the reduction of bounded
Hermitian operators linear over 2 in ° when embedded in
#°. (this construction can be extended to the unbounded

case).|}

We now turn to a discussion of the structure of the
wavefunctions of Eq. (2.39), the action of % on these wave-
functions, and the symmetry represented by the elements of
A which leave invariant the expectation value Eq. (5.1).

(5.35)

Consider now the wavefunction f in the form given in
Eq. (2.39). Since PoiljesP, = PP 5* and
P =P, + P, ,, we obtain (for each a = 0,1,2,3)
fBo =3 ePille, (5.36)
3

for the projection of the general wavefunction into each
superselection sector.

For a € ¥,.,, we again use the representation (5.6) to
obtain

~

fPa
= 2 €’th>¢0“050+ tr

=ZekP0¢o a0o(Po + P7) + 23: a0s(Po — Pr)e;

% 5=
3
= Z exPotlfsac — z exPols*agses, (5.37)
% kb =1
since P, — P, anticommutes with e,. Similarly, for a=£0,
fPa=3 ePiliedupd
ks

= 3 PP~ P)

k

e, P, (P + Pey

|
M-

k

o

=1

Wh*a ., + Z e, Pofiaes.

ko =1

= ;e

(5.38)

Comparison of Eq. (5.37) and (5.38) with Eq. (3.8) leads to:

Statement 4: The generalized phase albebra ... induces
transformations with the same pattern of wavefunction conju-
gations as that induced by the general operator linear over
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C(1,e,), i.e., it contains the same type of “lepton—quark”
transitions.

Before turning to a discussion of the action of %, for
general &, on the wavefunctions, we must first make explicit
the structure of the Hilbert space 77, , the complex space
defined by the scalar product given in Eq. (5.22) with ¢4 as
complex unit. This scalar product defines orthogonality be-
tween manifolds linear over e . If £, g belong to two such
orthogonal linear manifolds, then [using Egs. (2.26) and
(5.9)]

tr(fg)= 3 (f1i g i)
kr

3

tr(f;g) €§ = z [(fka’g ktz+3)_(fka+3!gka) ]§0a

ka=0
(5.39)
must vanish. We define, in place of Eq. (2.38),
z/ﬁ’(l; =fro—F k7€
'ﬂié = ~fka =S ka+ 366 0a
SHETSPE S

Using the relation (@ =1,2,3)
1+ 64 1-¢&,
k& k k k o
@) =@ (s ()

=(fka’g krz)+(fk,(x+3?g ka+3)

+ €7§0a [(fka’g ka+3)'_(fka+3’g ka) ]’

(5.41)
we obtain
tr(f,g) = Re(¥h,x) + Re(¥ifx i),
tr(g)e§ = — Im(yh,x5) + Im(Pis,vs). (5.42)
Hence, Eq. (5.22) may be written as
3
(e, = Wox0):s + Y Wa¥ed)s (5.43)
a=1
where, fora =0,1,2,3,
(¢G’Xa)§ - Re(¢a’Xa) + eglm(ll}a’Xa (544)
From the identity
3 1+ &,
r=senfus+ 3 [u ~52)
a=1
- 1 - %3
ke (———f" )]ea] (5.45)

and the fact that e5 takes on the value £, e, on each of the
5 ,, it follows that the analog of Eq. (2.40) is for f— fa,,

a

a; € C(1,¢%),
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Vs —>¢ia,
YEE >y kEgr, (5.46)

where ¢ = a.... Making these replacements in Eq. (5.43),
one finds that, in analogy with Eq. (3.1),

(fgay). =(e) . a (5.47)
and by conjugation
(facg). =ai(fg) . . (5.48)

Following the procedure of Sec. III, we again define the ac-
tion of an operator linear over the reals according to Eq.
(3.4), and requiring linearity over C(1,e%), i.e., that

(Af)ang(fag),

we find the superselection rules
Ag(l)zo’ Agzlx ao—o (Soa=+1),
Age=A5=0 (§ou=—1)

Aﬁg:() (§{1ﬁ=+1), Aﬁ};-—-o (5(113:—1)
(5.49)

We may therefore write the action of the general operator
linear over C(1,e %), in a form which displays these super-
selection rules explicitly, as

. 3 cl 1—§(1
Al 3 [atiot (~2)
a=1

. 1+ a g 1— ]
T e R

+4 K é‘(1+§°" )+ g{ (I—Jrf—“”—)

Afzz e P

(5.50)

Operators linear over a, € C(1,e;) therefore couple lepton-
quark and quark—quark spaces in a way distinct from opera-
tors linear over C(1,e,) [compare Eq. (3.8)]. We shall now
demonstrate:

Statement 5: The generalized phase algebra U induces
transformations with the same pattern of wavefunction conju-
gations as that induced by the general operator linear over
C(1,e5), i.e., it contains the same type of “‘lepton~quark™ and
“quark—quark” transitions.

To prove this statement, we use the general relations
given in Eq. (5.13) and the decomposition Eq. (5.36). First,
consider the action of p§_, for a=1,2,3:

fﬁoﬁ§a=28k1’o¢§(1’o§oa _P7) e;

Since ¢, anticommutes with P,— P;, and commutes with

P, 4 P, we obtain
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Potyg(Pof g —Py)
el (42 ()

and hence
f ﬁ Oﬁga

ol () (). )

(5.51)

Next consider (@=1,2,3)

SPaplo=—F exPot Pk o —Pr).
By the same argument used above, we obtain
FPapbo

* 1 § Oa 1 § Oa
= P, [ K (__)~ 1(;(_____)]
E e P Y 3 Y 5
(5.52)
Finally, we study the expression (a,f=1,2,3)

FPapas= + 3 e P k(P 5+ P) eg.
k

The argument used above is again applicable when we write

(Pogaﬁ +P7)
:(1:%&?_)( Pyt P (-1‘—5‘11)(1’0—& )

and we obtain
f P a,ﬁ 53

=Seuh [( +§“ﬁ)¢k <—l§ﬁ)¢§‘]eﬁ.

(5.53)

Comparing the results (5.51), (5.52), (5.53) with the form of
Eq. (5.50), along with the known action of p§, =P, we see
that the phase algebra %, induces transformations in accor-
dance with Statement 5. [Jij

We emphasize that the operators linear over ¢ $, as de-
fined by Eq. (5.50) and the generalized phase algebra %,
induce “‘lepton—quark” and *“quark-quark” transforma-
tions with a pattern of linearity and antilinearity that is dif-
ferent for each of the eight choices of £. According to the
remarks made in our discussion of Eq. (3.8), this choice
therefore influences the structure of “leptoquark” and “di-
quark” currents present in the corresponding field theory.

We now turn to a discussion of the symmetries associat-
ed with the generalized phase algebra and with automor-
phisms of C,. We shall confine our discussion to 2L..., al-
though similar arguments are valid for %, in general, using
the scalar product (£,) ¢ ¢ defined in Eq. (5.22), for the con-
struction of the complex Hilbert space.

The transformations 2 that leave pure states invariant,
i.e., satisfying [Eq. (4.50)]
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>

ﬁaaa*Pa:" zaaﬁﬁaﬁa;ﬁpéazz la af} IZPa =Pa’
B
have the property

Z|a“ﬁ|2:1'
B

At the beginning of this section, we discussed the expecta-
tion value of an operator A linear with respect to 2. The
scalar product appropriate for the discussion of operators of
this type is the one defined by Eq. (5.19). Due to the proper-
ties of the trace , however, [as for the norm (5.20)],

$tr(fAf) u=tr(fASf) .

The generalized phase algebra % does not respect the super-
selection rules associated with the physical description of
obervables defined to be linear over % (Statement 3). The
linear manifolds of 5%, span all of the superselection sub-
spaces; it is the requirement of linearity with respect to this
algebra which confines the action of the observables to each
minimal ideal. Although the general vector f, which has
components in more than one of the #°,, corresponds to a
mixed state in the sense of Eq. (4.40), we may still ask for the
subalgebra of % which leaves Eq. (5.55) invariant. With this,
we many extend the notion of generalized phase and the
scope of the associated gauge transformations.

(5.54)

(5.55)

In this extension, we obtain:

Statement 6: The subalgebra of % which leaves expecta-
tion values of operators linear over N invariant is its unitary
subgroup U (4), and is a realization of the U (4) invariance of
the complex scalar product.

To prove Statement 6, we first discuss in a little more
detail the properties of an operator linear over 9. We shall
treat the algebra ..., in what follows, and suppress the index
+ + +. Similar arguments are valid for any of the .. Com-
paring Eqgs. (5.37) and (5.38) with Eq. (3.8), we see that the
transformation f —fa can be performed by the operators B
(linear with respect to e;), where (@ =1,2,3)

ki Kl
B oo=20d ;B o, =

ki
B o= —2g,0 AIBaB aﬂa5 ki

~2,06 4
(5.56)
The condition of linearity,

(Afa)=(4/)a,
is therefore equivalent to

ABf=BAf, (5.57)
i.e., 4 and B commute. With the help of Eqs. (3.12) and
defining B as in Eq. (5.56), we obtain

3
(BA)§o=a0d §— 3 a,4L",

a=1

3

(AB)go=a0A 56— Y a5, A5,
a=1
3

(BAYSh =awd §l,— > agdf,
pg=1
3

(AB)oo = —a,, 45— Y a5, A6,
B=1
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(BA )aO— aOa‘A (’;(l;‘ +z a;iaA ;;{)
I

(AB)QO_ ZaOBA a3’

(BA)aﬁ* aOaA +2 raArﬁ’

(AB)y=—anA a0+z ag AL (5.58)

With the requirement (5.57), i.e., that [4,B]=0, it follows
from Egs. (5.58), which must be valid for all a € %, that
(x=1,2,3)

AN =4¥ =0,

ag,

Ae=0 (a#B),

A =4k (5.59)
For operators 4, linear over %, we therefore have
Af—zekpo( +2Ak1s ! a)
(5.60)

It will be necessary for us to examine in some detail the struc-
ture of (£,4f). Introducing the notation

f do [*Af=(fAf) |

where do is a measure on the manifold over which the com-
plex wavefunctions are defined, we find («,f£0

(FAf)
=y da(~ze,,,¢ﬁ‘+z/z{;’)Po
k! B

x (4 ot T A vhe )

o+vo PoA

= da( S uhesrial
[3

—S hesPoe, Ak’¢”+z¢ Pye A )

B.a

(5.61)

The first term of Eq. (5.61) contains the (5,0), (3+ 3,0),

(B, 7), (B+ 3,7) parts of ( /,4f), the second contains the (0,0),
(7,0), (0,7) and (7,7) parts, the third the (3,a), (54 3,a),
B.a+3), (B+3,a+3), and the last term, the (0,a), (7,a),
(0,a +3), (7,a+ 3) parts. Since these all involve the real and
imaginary parts of independent wavefunctions, all of these
pieces are independent. This is the result we shall need, but
we note in passing that only the second and third terms can
contribute to the trace. Breaking up the wavefunctions into
real and imaginary parts for the calculation, and recombin-
ing terms, we find

286 J. Math. Phys., Vol. 20, No. 2, February 1979

tr( £Af)
:trf doy¥ Py A 15(1)11,64-2 trf doy P AKy"

—iRe[ dor vt alully Re| doviatiyl.
: (5.62)

We now return to the question of the invariance of the
expectation value of an operator linear over %. We require
that

tr(fa),A (fa))g =tr( ( LAf) Aaa*)

—tr(fAf) 9. (5.63)
Calling b—aa* — I, Eq. (5.63) can be written as
a Bio LA P Pas®) =0. (5.64)
Now, d;e to the linearity of 4, one finds
(FAF Bped =S AP g+ AP s
el (A g s ~(FAD) s,
(5.65)
and hence, Eq. (5.64) implies
5 LU i+ AN 01395 (Rely)
LA g2 AP g Imb) =0, (5.66)

The independence of the pieces of ( f,4f) appearing in Eq.
(5.66) which we have already established, then implies that
b=0 (if 4 is restricted to operators self-adjoint in #7y, then
Eq. (5.66) implies only that the symmetric part of Reb,;and
the antisymmetric part of Imbg,, vanish; since b=aa* —1,
this is, however, all of bg,,). In terms of the components of a
in C(1,e;), the expectation value of an operator linear with
respect to ¥ is invariant under transformation induced by
a € ¥ satisfying

2 A58, =6 ay
B

that is, the transformations of U(4).

(5.67)

Since a € A commutes with e,, it is easy to see that the
complex scalar product is invariant under these
transformations:

(fa,ga) =tr(( f,g) aa*) +e;tr(( f,g)e, aa*)

=(/2. B (5.68)

In the last part of this section, we discuss a class of
automorphisms of the algebra and its connection to the U(4)
symmetry of the states. It is well known that G, is the group
of automorphisms of the Cayley algebra. The fact that P,
determines, through the equivalence relations given by Eqgs.
(2.20), multiplication rules for elements of the Clifford alge-
bra which are equivalent to that of the octonions implies:
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Statement T: The automorphisms of C; which leave P,
invariant provide a realization of the group G, in the ideal
generated by P,.

We wish to make this realization explicit. Let

U= 2 U P ki (5.69)

where u,, € R and
7
Z U gt g =0 g
=0

represent the O(8) of automorphisms of C; (in 77°,). These
transformations, acting as a generalized phase in /7., leave
invariant the real scalar product tr( f,g), and correspond to
orthogonal transformations among {fP,}, k=0,1,...,7. If

7
Z U ot pp k=P, (5.70)

ki=0

UP()U*=

then u, o= +6,,. The transformations which leave P, invar-
iant, up to an over-all sign, are therefore

;
U=Po+ Z tklpk[' (571)
ki=1
The requirement UU* =1 implies
7
Z tkltml =(Skm’ (572)
I1=1

so that U generates transformations (reducibly) in O(7).
Since P, is invariant, the equivalence relations for the { e k 1
defined by

e,=Ue, U*, (5.73)

are the same as those for the {e,}. The action of this O(7)
projected into the minimal ideal generated by P, is therefore
that of G,. We shall discuss, in the following, the mechanism
for this projected action.

From Eq (5.71), for k=1,2,..

ek—(Po“" Z tlmplm)ek(P°+ E ijpji)

Im=1 kj=1

!

(et PotPsety)

M-

1

7
+ z L 5O i 1o (5.74)
iflm=1
where we have defined
P imC kP ji =0 miiP iis (5.75)

so that o,,,,= 0,41 according to whether the multiplication
rules Poe e , =+ Poe; are realized or not for the indices
m,k,j (cyclic). We note that

UPye,  U*=P, e, =Pye,, (5.76)
where
. 7
ek = 2 e{t 1k (5.77)
=1
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corresponds to the O(7) of automorphisms that leave e, =1
invariant. It is the more highly structured function { e ; }
which satisfy the equivalence relations Egs. (2.20), by con-
struction, and not the { e, }. Intermsofthe { e, }, Eq. (5.74)
can be written as

. ” w 7 L e
er=e,Po+Poe;+ Y o,ye,Pe;, (5.78)
mj=1
which is, in fact, evident from Eq. (5.76) and the fact that the
pi=ePoe;=e Pe;", ij=0,1,.,7, (5.79)
form a complete basis for C,. For k54/,
Pie,e,=Pse, Z iyl im0 yme nPoe (5.80)

ijnm=1
Choosing a subset of the #;; which belongs to the group
G,, characterized by the invariance of the antisymmetric
tensor
;

UUkz 2 tiltjmtknalmn’ (5'81)
Imn=1
we may use the relation
E Ll yn O i = Z O ing? gi» (5.82)
mj=1 g=1
and hence Eq. (5.80) becomes
+ ’ ” 7 »
Poekel=Poek z a'mqtqle,,Poe,
ing=1
;
=P 3 tyl €0 g (5.83)
ing=1
Again making use of Eq. (5.81), we obtain
Z amq nktql Z tUUjkI (584)
ng=1
so that the required equivalence relation,
Poekel_zpoakl_/ ity
=P,0 e, (5.85)

follows.

We have derived Eq. (5.85) by assuming that the ¢; are
elements of G, but is, in fact, nof necessary that the ; satisfy
Eq. (5.81) in order to obtain this result. Replacing e , in Eq.
(5.80) by the relation given in Eq. (5.77), one obtains
Pye,e,

.

S 3>

ijnmg=1

.
€t it ity e Poe;

gt nm

7
:PO 2 tnktnm qobmel’ (586)

fmn=1
which reduces to Eq. (5.85) after utilizing the orthogonality
of the ¢ in the first two factors. The G, symmetry, appearing
in the behavior of the mapping { e, } — {e ] in the equiv-
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alence relations obtained from the ideal generated by P,
leads to an algebraic structure which would be obtained if
the ¢;; were restricted to G,, but is, in fact, valid for all #; in
0(7).

We now turn to a discussion of automorphisms on
wavefunctions of the form Eq. (2.39). In particular, we shall
be interested in automorphisms which leave the 7 direction
invariant. If U = U, leaves e, invariant, it must belong to 2.
Furtherfore, let U, leave P, invariant, i.e.,

UyP,U § = U (P,U, = Py; in this case, the representation Eq.
(5.6) has the form

3

Up= P, + 8gpDap (5.87)
aff=1
where
3
S a,M,,=0,, (5.88)
=1

ie., a,gbelongs to U(3). This result is parallel to that of Eq.
(5.72), where t;; was found to be an element of O(7); just as U
defined by Eq. (5.71) acts as an element of G, in the ideal
generated by P, U, defined by Eq. (5.87) must act as an
element of SU(3) in the ideal generated by P, since it belongs
to a subgroup of G,. We shall make this result explicit in the
demonstration of:

Statement 8: The automorphisms of C, which leave P,
and e, invariant provide a realization of SU(3) in the ideal
generated by P,, and coincides with the SU (3) subgroup of the
generalized phase U (4).

Under the automorphisms generated by U, e, — e_,
where

‘ *
ea:UOeleO

~ 3 A k) . .
= (PO + Z au[}prr/} )e a(Po + Z a}’(SP(S]/)
Y

afd- 1 b=1

3 ~ . . A
=N (Poe ofuPratd,adya ofo)
yo=

3

>

y&ofi ==

A,5P05€ aPsAys- (5.89)

For the evaluation of the last term, we note that

Pye Py sP5£0 only when a8, and then

Poe pe e s=+P, . Evaluated on P,, the sign must be oppo-
site since e, anticommutes with the {e,}. From Eq. (2.13),
(for €4, the usual totally antisymmetric tensor in three
dimensions)

Poe e o5 =Po€g,s (cyclic), (5.90)
and therefore we obtain
Poeje e sPo=€ 5,5 (Po— P, ). (5.91)

As in Eq. (5.74) we therefore have

A

3 3
A 2 85,65+ 2 ag,ezP,
A=\ B=1

-}

€ =
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3
+ 2 € gasAsp€ a(Po“*Pv) € ;/3;5 (5.92)
Bdoy=1
From Eq. (5.92), it is clear that
P0€;1 =Pye ;;
P7€;1=P7e;, (5.93)
where, as in Eq. (5.77),
. 3
€= Y agepg, (5.94)
B=1

where the a g are elements of U(3). Again, it is the more
highly structured functions { e, ]} which satisfy the equiv-
alence relations

3
(eBea)J:z € gas€ 5> (5.95)
5=1
and not the { e | }. In terms of the { e }, Eq. (5.92) can be
written, in a form similar to that of Eq. (5.78), as

+ A " » ol 3 ” #a
e, =P, +e Pot Y €puseg(Po—Pr) ey (5.96)
B5=1

It is clear, from Eq. (5.90) and the fact that the transforma-
tion that brings e, to e , is carried out by a unitary operator
which leaves P, invariant, that

Poeeg=Pi€ ge.,, (5.97)

i.e., that the automorphism acts like SU(3) in the ideal gener-
ated by P,. To obtain a little more insight into the mecha-
nisms involved, we use Eq. (5.96) to obtain

A . . A ” 3 " L
PoeaeﬂZPoea z 6037,80(}’0—1’7) ey. (5.98)
ay=1
Now,
A .3
Poe e, (P—P) =P, Y ag.ega e, (P—P)
By=1
3 -
= > aga,Pege, (Po—P)
By=1
=8 (Po—P)), (5.99)

where we have used the U(3) relation Eq. (5.88). Hence,

ﬁoe;e}3=6aﬁy(Po—P7) e;

= aﬁ}/(Po_P7) e‘.,,. (5.100)

Asin Eq. (5.96), the occurrence of P,— P, is necessary due to
the commutation properties of the {e,} (and { e }) withe,.
The product of e,’s does not generate multiplication rules
through equivalence relations defined on the single nonmini-
mal ideal generated by P,+ P,. However, projecting out the
minimal ideal generated by P,, one obtains Eq. (5.97).
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The automorphisms induced by U, on wavefunctions of
the form given in Eq. (5.36) result in the following,

(5.101)

Uf B U= e P,
k
and for a5-0,
~ 3 , .
UfP,Uy= z e Pble,
ka=1
3 .
=Y e Pygages (5.102)

k,a=1

Ignoring the transformation of the k indices for our pre-
sent purposes (one could alternatively consider wavefunc-
tionsf, =P, e, f for which this transformation is trivial), we
see that the automorphisms generated by U, coincide (on the
right) with the action of the generalized phase transforma-
tions induced by U € 3. As we have seen, the effect of this
transformation in the ideal associated with P, is that of
SU(3), and is the intersection of the U(4) from % with the G,
acting on this ideal due to the automorphisms [Eq. (5.7)] of
C, which leave P, invariant.

VL. TENSOR PRODUCTS

The construction of tensor product spaces is essential
for the treatment of the many-body problem and for a con-
structive approach to field theory. In particular, in a theory
of leptons and quarks, the one particle Hilbert space is sup-
posed to contain an “unobservable” sector, corresponding to
the quark states. These states play a role in the construction
of two- and three-body states corresponding to mesons and
nucleons, when they are combined in such a way that the
combination lie in the observable parts of the two- or three-
body space.

A tensor product useful for the purposes mentioned
above should have the following properties:

(a) The algebraic structure of the tensor product space
is the same as that of the original Hilbert space;

(b) it is well-balanced, > i.e., it is linear in each factor (up
to automorphisms);

(c) for sufficiently well-behaved linear operators acting
on each factor, there exists a linear operator on the tensor
product with equivalent action.

The first of these is required in order that the definition
of the structure of the Hilbert space, including the field or
algebra over which it is defined (containing the scalar pro-
ducts), be the same for its tensor products. The definitions of
orthogonality, linear manifolds, transition probabilities,
etc., are therefore the same for one-particle, two-particle, -
states and hence a Fock space can be constructed. The sec-
ond requirement asserts that the tensor product of linear
manifolds is a linear manifold in the tensor product space,
and the third requirement corresponds to the consistency of
linear mappings. These last two properties are also essential
for the construction of a Fock space. The difficulties associ-
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ated with achieving a tensor product of this type with Hilbert
spaces over quaternions has been discussed by Jauch, Schi-
minovich, and Speiser."’

We have defined four types of Hilbert space in the
framework of the vector space over C,. These spaces have
scalar products belonging, respectively, to R, C(1,e,), ¥, and
C,, and the closed linear manifolds associated with each of
them are closed over the corresponding algebras. The re-
quirements (a), (b), and (c¢) may therefore be imposed on
tensor products appropriate to each case, and for operators
linear over the corresponding algebra. They can be satisfied
trivially for tensor products of # ", and we have constructed
solutions for tensor products of #7, valid for operators lin-
ear over C(1,e,). We shall show that there is no well-balanced
solution for the tensor product of the spaces 7y or %,
representing the action of operators linear over the gauge
algebra or over C,.

A linear manifold closed over the gauge algebra 9 is a
gauge invariant object. The negative result that we have
cited above implies that there is no closed linear manifold in
a tensor product space which corresponds to the direct prod-
uct of two such gauge invariant manifolds. On the other
hand, since the algebraic structure of the Hilbert space is
preserved under the tensor products which take products of
complex linear manifolds into complex linear manifolds,
such product manifolds can always be extended to their clo-
sure under the gauge algebra 2 in this tensor product space;
i.e., the actions of the gauge group can be divided out only
after the tensor products are carried out in a nongauge invar-
iant way. This situation is somewhat reminiscent of the
structure of the Fock space for the electromagnetic field, for
which annihilation—creation operators are constructed in
some specified gauge.

According to condition (a), the tensor product of vec-
tors f, g, belonging respectively to two (isomorphic) Hilbert
spaces, has the same algebraic structure as that of a vector in
one of these spaces, i.e., in (¥ ® #).,

feg= i (feg,p,;

=0

(6.1)

Real linearity (the reals are a subalgebra of every algebra
that we shall consider) then requires that

(f ® g) i z Tq(k[]mn) fk/g mn?

kimn

(6.2)

where the tensor product of real functions is defined in the
usual way (direct product). Since we shall require property
(c) as well, there is no loss of generality in taking the set of
coefficients { 7,(k/ mn)| to be real (and not real linear opera-
tor) valued. Although the existence of tensor products for
H# ' follows trivially from the existence of tensor products
for 77, some points can be clarified more easily by first
demonstrating:

Statement 9: There exist tensor products, satisfying the
properties (a), (b ), and (c), for Hilbert spaces of type Z'R; in
this case, linearity refers to the real subalgebra R of C,.

Since f; — f ;A whenf— f4,and A € R, condition (b)
is trivially satisfied. Using Eq. (3.3) to represent the action of

L.P. Horwitz and L.C. Biedenharn 289



the general operator linear over R, requirement (c), that is,
that there exists an operator 4''?’ such that

A(lZ)(f@ g)=A(ly'® A(Z)g
is represented by

(A(l:/' ® A(Z)g)ij

=3 T (kimn) &),

kimn
PP

- z ‘ngll%) Tkl(pqp'q,) qugpi]' ’

kl.pg

P9
where the action of .«/''*’ on the real tensor productf .8
is defined by this equation. Since we are not interested at
present in questions of domains and closure, we shall assume
that 4"’ and 4>’ are bounded operators in their respective
spaces. Hence Eq. (6.4) must be valid for every f,g, and

therefore

Z o f,lkzl) T 1, (papq’)
7]

(6.3)

@)
Pg X ”Q/mnm '8 py )

6.4)

= 3 Tkimn) &9, &2, (6.5)

ki,mn

Substituting these expressions in Eq. (6.1), we obtain

F=3 14

k,m

s LT 5(k,0|m,0) + e ik 7|m0) —

LYk ym* [ T i(k,0|m,0) — es" i(k 7|m0) —

must define the operator 4'*?’. The coefficients 7, can be
chosen with a property analogous to that of Clebsch—
Gordan coefficients, with all explicit indices corresponding
to magnetic quantum numbers, e.g.,

>

Pa:pq’

Ty pap’'q) T v (0glpd) =8 146 s (6.6)

in this case, Eq. (6.5) can be solved for the operators .o} .
We now turn to the proof of:

Statement 10: There exist tensor products, satisfying the
properties (a), (b) and (c), for Hilbert spaces of type 77°C; in
this case, linearity refers to the complex subalgebra C(1,e;) of
C.

To work with complex linearity, it will be convenient to
introduce the complex-valued elements defined in Eq. (2.38)
and, furthermore, to define

E5=(fe g w—(f®g e
Zi=—(f8 Q) wu—(f®Q) ka+3€7
and, for the coefficients,
F§=Tko
rt=

6.7

=T e

—To—Traisern (6.8)

ik 7im7) + e, i(k O|m7)}

ik 7\m7) — e;I" {(k 0|m7)]

ey [T 5(k,0|m,0) + e, i(k 7\m0) + I'i(k 7|m7T) — e,I" {(k O|m7)]

+ 396 x0' [ o(k,0|m,0) — esT"o(k T\m0) + I"o(k 7|m7) + e:I" o(k Oim7) 1}

+ X

k,m,a

m[__

+ 35 xa [ —
+ &’ [
+ 305"yl
+ 3T
+ 35 xe [ —
+ s

+ Lol

+ Y g T olkalmB) — e

k,m.a,B
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ik O|ma) + e, i(k O|m,a + 3) — e;I" i(k T|ma) —

I'i(kO|ma) — e;" {(k O|m,a + 3) + eI ((k Tima) —

— I'i(ka|m0) + e;" y(k,a + 3|m0) — e, {(ka|mT) —

I'i(ka|m0) — e.I" i(k,a + 3|m0) + e, y(ka|mT) —

r'ik,a + 3\mpB) — eI {(ka|m,B + 3) —

ik 7\m,a + 3)]

ik 7\m,a + 3)]

— I'(kOlma) — e; " i(k O|m,a + 3) — e.I" 5(k Tima) + ik Tim,a + 3)]

— ik O|ma) + exI" ik Olm,a + 3) + e;T" ik T\ma) + Tk Tim,a + 3)]

I {(ka + 3|m7)]

Iyka +3|m7)]

— I'ika|mO0) + e.I" i(k,a + 3|m0) + ;1" {(ka|mT) + I ik,a + 3|m7)]

— I'i(ka|m0) — e, i(k,a + 3|m0) — e, i(ka|m7) + I ik, + 3|mT)]}

Ti(k,a + 3|/mB + 3)]
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+ YWD ikalmB) + e Tik,o + 3|mB) + e, T ika|m,B + 3) — I (ks + 3|m,B + 3)]
+ Yy [T ikalmB) — exT ik, + 3|mB) + e, I'ika|m,B + 3) + I'y(k,a + 3|m,B + 3))

+ WD kamB) + & Tik,a + 3|mB) — e, Tikalm,B + 3) + itk + 3|mB + 3)1}. 6.9

The part of the direct product in the “nonobservable” space = ;,, is given by Eq. (6.9) with I'| replaced by I"}, since these are
distinguished only by making linear combinations with respect to subscript indices of the coefficients 7. Our purposein display-
ing the structure of Eq. (6.9) is to demonstrate that the coefficients of Y/§ ¥ ', ¥ ¢ x &, are linearly independent, and any
subset may be chosen to vanish. We shall require, to satisfy property (b), first of all, that

2(fe (gN=(E(fe g2 (6.10)
and

Z(f2) ® 9=Z(f® g)z, (6.11)
for every z € C(1,e;). Then, according to Eq. (2.4),

Lo Ek EL Dz (6.12)

=
Equations (6.10) and (6.12) require that the coefficients of terms including the factors y 5", y & vanish in Egs. (6.9) and that the
coefficients of the terms with factors y ', y " vanish in the corresponding equations for Z',. Equations (6.11) and (6.12)
require that the coefficients of terms including the factors ¢/, ¥ X vanish in Eqgs. (6.9), and that coefficients of the terms with
factors ¥ X, ¥ X vanish in the corresponding equations for 2;. These conditions are satisfied only if the following relations are
valid:

Ti(k0|m0) = e,"(kO|m7), Ik 7T|\m7)= — e:I" i(k7|m0),

ri(kOjma) = e,k Olma + 3), ik T|ma+3)= — eI ik 7|ma),

Ii(ka|mO) = e,I" i(ka|mT), T(ka+3|m7)= — el yka+3|/m0), Iyka|mB)=e, I (ka|mB+ 3),

Fitka +3mpB+3)= —e; Tifk,a +3|mB), I'(kO0|m0)= — e,I"'(kO|m7), I (k7|\m7)= e, ,(k7|m0),
rik0lma) = —e:l'i(k0|lma +3), I'fkT|ma+3)=el (k7 |ma), Ii(ka|m0) = — e,I"'(ka|mT7),

Titk,a + 3|mT7) = e;I" (k. 4 3|m0), Iigka|mB)= —e, I'i(kalmB +3), I'(ka+3mB+3)=e I (ka + 3|mB),
LCi(k7mT) = — Li(k0|m0), I'kOlma)= — Cik7Tima+3), Iikalm0)= — I yka -+ 3|m7),

'ika|mB)= —ika+3mB+3), I'(kTmTy= —I(k0|m0), I'(kO|ma)= — I (k7|ma+3),

Iifkalm0) = — I'(ka + 3|m7), I (ka|lmB)= — T (ka+3mB+3). (6.13)

The first 16 of these relations are adequate for Eq. (6.10) and the remaining eight additional relations are required to satisfy Eq.
(6.11) as well. We therefore obtain* the following, expressed in terms of the remaining independent coefficients:

Zo=Y voxo TokOm0)— 3 [Wox o TokOmay+ ¢’ x5 Molkam0) ] + ¥ ¢y 5" IikampB),  (6.14)

k.m k.m,a k,m,a,B
S =3 Yo xe Ty kOmO)— ¥ (Y5 x ol (kOma)y+¢ oy T (kam0) 1+ ¥ ¢hiy gl (kampB). (6.15)
k,m k,m,a k,m,a,B

The structure of this result is evident. What we have done in the course of our demonstration is to make explicit the relations
which must be imposed on the independent coefficients of the general direct product in order to assure the validity of property
(b). By a different choice of surviving terms in Egs. (6.9), a tensor product linear in the second factor and antilinear in the first
(thus accommodating the automorphism z — z*), for example, can be obtained.

We shall not discuss here the symmetry properties of the coefficients remaining in Egs. (6.14) and (6.15) which would
correspond to the structure of tensor products with definite quantum statistics, nor shall we discuss the question of
associativity.

We shall now show that this tensor product is consistent with property (c). According to Eq. (3.8) for complex linear
operators A¢ B,

(4N =3 {A SO+ ALYEAGE +5 4 ’;;;w;,],

(Brg)‘:; {Bééx6+2382x5,3%x6‘+;3’;2x2],
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and hence, substituting these relations into Eq. (6.14) and (6.15), we require the existence of a complex linear operator C¢
defined on the tensor product space such that

©o%=3 ro<k0lm0)( b S A )(BS o + DEERY )

11

-3 [ (k0|ma)( +2A05 B)(B;”é *+§‘,Baaxﬁ)

k,m,a
L

+ PitkalmO)(4 5%+ 5 4554 Nza + 3 sais 3]

. I‘é,(kalmﬁ)( v+ 3 A, )( B+ 3 BR xa) (6.16)
k.m,a,fB
[N

(CEY, = zf(k0|m0)( KL +2A"" )( o 6+230ﬁ xﬁ)

L

-3 F(k0|ma)( ki* +ZA"" )( Z‘é‘xé+ZBaﬂaxB)

k,m,a

L1

4TI (kaImO)( kLol +ZA )( mi’s 1*+ZB(')"B,"X;3)]

+ 3Ty (kaImﬁ)( s+ 3 AL )(B;;g) *+ZBgaxa) 6
e

On the other hand, the action of C, on the vector = is also specified by Eq. (3.8), i.e., using Egs. (6.14) and (6.15) in Eq. (3.8),
(CcZE)o= D, Cgo[l"é(k 0|mO)Yoxs — Z (I Gk Olmaydby ™ + FolkalmOyg xo'} + Z I ka|lmB s x5

k,m,l

+ 2 Cga.[rﬁ,,(ko|m0)*¢’o‘)(g"—z (I L (k Olmay* Yy " + Ie(ka|m0)* 45 x5’}

k,mla a

+ 3 ltkalmp)y i | ©.18)
af

(C =), = ZI Clo [ §kOmO)* ¥ 6" x & E (I ikOme) v & x 7 + T {(kaimO) Yoy ) +Z Fo(kalrnb’)t/fax,;]

k,m,

bSOl om0y vt =3 T hKOma) $E x 7+ T ka0 L

k.m, LB

«@

+ 3 I (kaimpB’) w?;xZ’»]- (6.19)
a.fF
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Equating the operators defined by their action on ¥y 5, ¥ oy ', *, ¥ x 5, and ¥, y ;i in Eqs. (6.16) and (6.18), we find
S {rsoro) C +Zr ooy Cg,
=3 {I§k0m0) A &B 5 2 Tika'im0)A¥oBg + 3 I'itka'lma") A 5,B7S }, (6.20)
i“n dar
ryora) Cio+ S Iiiolay* g,
= —T(kOmO) AGBE! +3 Iifkam0) 4 B3 ~ 3. Mifka'ima”) A 5387, (6.21)
Tl Chot 3, Ilaf 0 CE,
— —PikOmO) AL BE +3 Mika'm®) 4K, BE — S Mifka'ma™) 4B s, (6.22)

"

=T i(k0m0) A4 g{,Bo zro(ka m0)A K. B + 2 Tika'\ma™)A Y, B™;. (6.23)

Comparing coefficients of ¢/ y 1° - in Egs. (6.17) and (6.19) [in (C o.5) 1], one finds a set of relations with structure similar to
that of Eqs. (6.20)-(6.23). In this case, the coefficients [ on the left-hand side appear conjugated but the I" . are not; in place
of C g, theoperators Cl%, C?. appear, and on the right hand side, one finds r, ! in place of I' g, and the complex-valued
representatives of the complex lmear operators A, B appear conjugated relatlve to their structure in Egs. (6.20)—(6.23). Asin
Eq. (6.6), we may suppose that the I"%’s are chosen so that, for ¢’,a",y,'=0,1,2,3,

y Iy (Ia Va™) (la Va")=6,,68,,- (6.24)

lo\Ta”
Equations (6.20)—(6.23) and the additional equations obtained from (C = )‘}', may then be solved explicitly for the operators
Cl

In fact, the conditions of Eq. (6.6) and (6.24) are not necessary; it is only required that the equations be invertable.

A tensor product defined, for example, as (suppressing superscripts)

Zo=Uo¥o— Yok o -‘—'—a:—’//a)((‘)+'/’01’a’ (6.25)
obtained in a natural way with the use of octonions by Giinaydin,' does not satisfy this condition. By following the

procedure outlined above, one finds the relations

Coo=AwBoo, 0=— Z A aoB :109
0=AwB oy Cow=23 4 ,0B ro

—Cog=AoxBow, 0= z A B ;0’

=

0=AouBrpr —Co0Bpy=3 A osB (6.26)

from the alternative forms for (Cg.=),, and
Cao=—4,0B E)o» 0=A B 4o
0=—4 0Bows Cow=AcwB 40
—Cou=A yuB oy, 0=4,,B .,
0=A By —Coabpa=A03B cu (6.27)

from the alternative forms for (C.Z),. Hence, even if the complex linear operators in question do not induce “quark-lepton”
transitions (these appear, in any case, to be necessary in a theory which attempts to unify weak, electromagnetic and strong
interaction'®*?'), one still finds the conditions
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AooB(m: - z A aa'B aa’s

for any ', and
AwB yu=—A B (6.28)

These conditions cannot be valid for arbitrary operators 4,8, and hence condition (c) cannot be satisfied for a tensor product of
the type given by Eq. (6.25) (contrary to the assertion made in our earlier study?*).

We now turn to a consideration of tensor products for the spaces #7,, and prove

Statement 11: There is no nontrivial choice of coefficients T ;in the product defined in Eq. (6.2) which can be used to construct
a tensor product of spaces of type % y (with gauge invariant closed linear manifolds) or ¢ . , with the properties (a), (b ), and (c).

Sincee; € ¥, a well-balanced tensor product of spaces of type -#°, must be a restriction of the definition given by Eqs. (6.14)
and (6.15). We shall require first of all that

E(f e ga)==(fa ® g)==(f® g, (6.29)
where a € 9 is of the form given in Eq. (5.6). According to Egs. (5.37) and (5.38), when f — fa (f={ ¢ &, ]),

’/’é _’lﬁéaoo_z wa"aa'O’
p

Vo= > Yatoe —¥5 (6.30)
Substituting this transformation into the first two parts of Eq. (6.29), i.e.,

E(/ ® £ = | Mitkom0) - 3 (kam0) 4 ](xa"aoo—;x Ta,0)

sy [z FikBm )0 — I ikOma’) $ & ](Zx ;v‘aml—xa"asar),
7 >

a

Z(fega),= [r:',(k0|m0) & — S (ka'pn0) wl’;l](x man— Sy ;t'a;l)
o' ¥

+; [; L (kBma’) Y5 —TI  (kOma') lﬁg*](;xya;a,—xg"'aw) (6.31)

and

E(faeg) a=(¢éaw—z bl aaro)[ra(kmmm X8 =S Fikomy) x '"]
a ;/

'y (z P, — éaaay)[z Fitka'imy) y 7 — T ika'm0) y & ]
B ¥

a

Z(ras 0l =(¢§a-3 vhar )| i omo) Y3 DL 60om) 7

+3 (ﬁ Vhag, —1U§ aoa')[Z ri(ka'imy) y m — I, (ka'im0) Xg"] (6.32)
<

o

Comparing the coefficients of ¢ § y 7" and ¢/%’ y 7" from =5, and the coefficients of ¢§" y 7 and ¢4y ¢ from £, in Egs. (6.31)
and (6.32), we obtain

+a,, TiOmO)+ 3 Ti(kOmar’) a=+T5k0pmy) 8ot 3 Tika'my ) 8,
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+agl ika'm0) + 3 T itka'iny) ag, = + I i(kOmO) a6+ 8., I6(k¥imO0),
Y Y

+ 7 (0mO) 5+ 3 T, (kOma') a3, = + T (kOpmy) g+ 3 It (ka'ymy) 2o,

+ T kel pm0) agg+ 3 T (ka'hmy) 8o, = + T (kOO) 8%+ X T (krim0) 8,
¥ Y

Since all of the 16 complex numbers representing a € I are
independent, it follows from the first of these equations that
I'(kOm0)y = I"i(kaimBy=I" {(kOmf )=0, and from the
second that " (kajm0)=0 as well. The same conclusion fol-
lows for the I/, from the last two equations, and hence the
first equality of Egs. (6.29) admits only the trivial solution
for the coefficients of the tensor product [comparing only
Eqgs. (6.31) with =a, one finds a nontrivial solution corre-
sponding to a tensor product linear only on the right factor;
such a solution would not be useful in constructing a Fock
space].

Finally, if we admit that the {a,;} on the right side Eq.
(6.33) differ from those on the left by an automorphism, the
conclusion is the same (the proof is a little more involved).

Since 9 is a subalgebra of C., and we have shown that
there is no well-balanced tensor product over 9, there is none
over C; either. [l

Vil. CONCLUSIONS

We have discussed an approach to the construction of a
Hilbert space with a gauge group (in the fundamental repre-
sentation) in the simplest case in which the associative alge-
braic structure has a restriction to the nonassociative
normed division algebra of octonions and its automorphism
group to the exceptional Lie group G.,.

Given the structure of the linear manifolds, corre-
sponding to the elements of the lattice of propositions of the
associated quantum theory,"* the corresponding gauge sym-
metry (generalized phase algebra) is determined by the ap-
plication of Gleason’s theorem to the construction of phys-
ical states. One finds that the generalized phase algebra is the
commutant in the full algebra of the subalgebra over which
the linear manifolds are closed. The action of the generalized
phase algebra on vectors of the Hilbert space has the same
algebraic pattern as that of operators linear over the corre-
sponding subalgebra because these operators must also com-
mute with the subalgebra, in the sense 4 (fa) =(4/)a, fora an
element of the subalgebra. This commutant relation leads to
a kind of duality between the structure of linear manifolds
and the corresponding gauge symmetry. We have, in par-
ticular studied four types of linear operators, 4 , 4 (, 4 o,
and 4 ., associated with manifolds linear over the corre-
sponding subalgebras. In the form “linear manifolds<»>gen-
eralized phase algebra,” we may express this duality for the
cases we have considered here as

K e Cry Ko,

A yerC, FHooR. 7.1

The construction of tensor products was examined for
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(6.33)

Lach type of space listed in the relations (7.1). The require-
ment that the tensor product be well balanced, i.e., that the
product of linear manifolds correspond to a linear manifold
in the tensor product space, precludes the construction of a
consistent tensor product for %7y or 7. The linear mani-
folds of #° are invariant under complex phase (but not un-
der % or C,), and this is the largest invariance that can be
carried along with tensor products. Manifolds invariant un-
der U can, of course, be constructed in the image space of
K ® K~ H g, since its algebraic structure is the same
as that of the constituent spaces.

If the algebra % is to function as the gauge degrees of
freedom of a physical theory, the self-adjoint operators re-
presenting physical observables should be invariant under its
action, i.e. these operators should be linear over 2. The re-
presentation of the quantum theory of such a system in 5%
then, as pointed out in Statement 3, displays superselection
rules for the subspaces #°,, a=0,1,2,3. The U(4) from A
which leaves invariant the expectation values of operators
linear over 2 (Statement 6) contains an SU(3) subgroup
which coincides with the automorphisms of the algebra
which leave P, and e, invariant (Statement 8). As long as this
gauge subgroup remains unbroken, the subspaces #°,,
a=1,2,3, transform coherently among each other, but no
measurement of an observable can put their phase relation in
evidence. The fact that pure states in this subspace cannot be
prepared or detected suggests that some difficulty may arise
in the formulation of a second quantized theory in which
individual quanta are observable.

The physical manifestation of superselection rules, on
the other hand, is usually associated with some dynamical
phenomenon, such as a parameter that becomes very large
(e.g., the size of a ferromagnet), and our algebraic formula-
tion here makes no reference to dynamical constraints which
could lead to the algebraic structure we have used. We
should emphasize, however, that the SU(3) of algebraic au-
tomorphisms which enforce the preservation of this part of
the gauge symmetry is effected in an ideal of the algebra, and
in the same ideal, the elements of the C; algebra behave as the
elements of the nonassociative Cayley or octonian algebra.
Giinaydin, Piron, and Ruegg® have recently shown that the
projective geometry associated with the octonian algebra is
consistent with the axioms of the quantum theory although
it does not satisfy the Desargues theorem and hence cannot
be embedded in the larger projective geometry that may be
represented by a Hilbert space.'® As Biedenharn and van
Dam™ have explained, the Moufang projective plane, coor-
dinatized by octonians, has translations but not dilatations,
while a Desarguesian projective plane has both. Coordina-
tizing the Galilean null plane subdynamics [SL(3,R )] with
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octonians, an embedding into the Poincaré group is then not
accessible since the required dilatation is not available.

There are, therefore, indications that the nonassociati-
vity of the octonian algebra is associated, as Giirsey® pro-
posed some time ago, with the nonobservability of isolated
quarks. The connection between these algebraic constraints,
in the context of a unified theory rich enough in structure to
support them, and the attempts® to achieve confinement
through the dynamical properties of non-Abelian gauge
fields remains a challenging problem.
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APPENDIX A: GENERAL FORM OF AN
OPERATOR LINEAR OVER THE REALS

In Sec. III, the structure of an operator linear over the
complex subalgebra C(1,¢,) was obtained from the general
form of an operator linear over the reals. In this Appendix
we shall verify Eq. (3.3).

Let {@,} be a complete orthonormal set in the (separa-
ble) Hilbert space 5%, so that for fe #R

f=S@,A. A,c€R, (A1)
and, since
tr(¢n’¢ m):5nm’

Using the representation of Eq. (2.25), Eq. (A2) may be writ-
ten as

/{n:Z(anijxfij)' (A3)

If 4 is an operator linear over the reals, and is defined on the
@,, then

Af=% Alp,A,)=3 Ug,)4,.

Using Eq. (A1) again, we obtain the representation
A, =§¢>mamn,

where a,,, € R. WIth the help of Eq. (A3), we then find
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Af=2¢7mamn}’n

= Z ‘pmamn(¢)"[jxf,j),

ifmn

or

(Af)u = Z ¢ mija mn ( @ nkl!fkl)‘ (A4)

kimn

The linear mapping defined by Eq. (A4) is explicitly of the
form of Eq. (3.3).

APPENDIX B: ANTILINEAR STRUCTURE

If {¢,,¢,} represents the vector fin the sense of Eq.
(2.39), Eq. (3.8) indicates that a complex linear operator 4
can bring ¥, into the “lepton” sector of 4f, and ¥, into the
“quark” sector of Af, but with complex conjugation. This
structure is induced by the fact that under the operation
f— f2, ¥ — oz, and ¥, — i z*. The antilinear structure of
such a space can be exhibited by representing fby the column
matrix (we shall use an index convention)

(%)
where K is the operator of complex conjugation,? satisfying
K'=K, K=1, KzK=z*

The “natural” scalar product for vectors of the type
(B1) is [with a notation of the type introduced in Eq. (5.61)]

() v =[do ik ()

=fdo(waxo+¢,,x:). (B2)

This is exactly the complex scalar product defined in Eq.
(2.45). Complex linear operators then have the following
structure [see Eq. (3.8)]:
— [“o A oK
A= (A K A ) (B3)
In a similar way, a “‘natural” tensor product for vectors
of type (B1) is

) @ k)
® g= ® i , (B4)
ree=(y) e o
where i is the imaginary unit. Multiplying out the relation
(B4), one obtains

(Poxo—¥ a o) )
®g=]|. g (BS)

f g (l(l//()X o _dlal/ O)K
corresponding precisely to the tensor product given by Gin-
aydin.'® The tensor product which satisfies the conditions
stated in Sec. VI, however, can be obtained with the help of
some matrix algebra in the space defined by Eq. (B1).

Equations (6.14) and (6.15) can be written in matrix
form as
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==e) (Rl R @
=y el @

It follows from the relation

()= %)) @

that the transpose has the following property:

woip=[( ) (T

—kv (5 %) ®9)

It then follows that Eq. (B6) can be written as
= 00 I'(08)
w0y %) (RS FER))

I'y(aB )
(6 9)(%)

or

=u Fo Fo )K Xo
F=uk o) (9 XN (V) ®10)

Since the structure of Eq. (B10) assures complex linearity in
both factors of the tensor product in the “lepton” part, the
additional conjugation supplied by the quaternion factors
imply that =7 must be essentially the complex conjugate of a
form similar to Eq. (B10) [this can be explicitly seen from
Eq. (B7)]. In terms of the matrix algebra,

(2) = ()
&3 2) (% )
(8 9(%)

(B11)

and

Wi =wuw,) (5 9)

With the help of Egs. (B11) and (B12), Eq. (B7) can be writ-
ten as

(B12)

?) (1’ ,(00)

FY(O‘/J’))

K
Ey:(Kwoalpa)(O ry(aw)

K 0\(yr.K
X(o 1)(%)
or
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. KT (00K KT (08))/(yK
~kuon ) (P ok 1y ) G ) @13
13

Note that the coupling matrices for the tensor product de-
fined by Egs. (B10) and (B13) have the form of the general
complex linear operator [Eq. (B3)].
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Scattering theory and polynomials orthogonal on the unit

circle
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The techniques of scattering theory are used to investigate polynomials orthogonal on the unit circle. The
discrete analog of the Jost function, which has been shown to play an important role in the theory of
polynomials orthogonal on a segment of the real line, is defined for this system and its properties are
investigated. The relation between the Jost function and the weight function is discussed. The techniques
of inverse scattering theory are developed and used to obtain new asymptotic formulas satisfied by the
polynomials. A set of sum rules satisfied by the coefficients in the recurrence relaxation is exhibited.
Finally, Szego’s theorem on Toeplitz determinants is proved using the recurrence formulas and the Jost
function. The techniques of inverse scattering theory are used to find the correction terms.

. INTRODUCTION

The techniques of scattering theory have been used re-
cently to study the properties of polynomials orthogonal on
a segment of the real line.' These techniques have formed a
unified basis for obtaining information about various prop-
erties of orthogonal polynomials. It is natural to ask whether
the same techniques can be applied to other orthogonal
systems.

In this paper we extend the theory to polynomials orth-
ogonal on the unit circle. Very little in the way of new results
are obtained. However, we hope to show (1) that as with
polynomials orthogonal on a segment of the real line, the
methods of scattering theory form a unified basis for obtain-
ing various properties of polynomials orthogonal on the unit
circle, and (2) that these techniques exhibit close parallels
between the theory of polynomials orthogonal on the unit
circle and those orthogonal on a segment of the real line.

Our program is the following: In Sec. II we define the
polynomials and derive the recurrence relations they satisfy.
These formulas plus the initial conditions are taken as funda-
mental. Next (Sec. III) the Jost function, which has been
shown to play an important role in various properties of
polynomials orthogonal on a segment of the real line,' is
defined and many of its properties are examined. Since we
have started with the recurrence formulas, we must show
that the polynomials are orthogonal. This is done in Sec. IV
which also contains a formula relating the spectral function
to the Jost function. In Sec. V the techniques of inverse scat-
tering theory are developed. These techniques are used (Sec.
VI) to develop a new asymptotic formula satisfied by the
polynomials. A set of sum rules satisfied by the coefficients
in the recurrence relation is also presented in this section.
Finally, (Sec. VII) a proof of Szegd’s theorem on Toeplitz
determinants is given. The proof depends only upon the re-
currence formulas and some properties of the Jost function.
The techniques of inverse scattering theory are applied to
find the correction terms.

“"Present address: Mathematics Department, Georgia Institute of Technol-
ogy, Atlanta, Georgia 30332
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Il. PRELIMINARIES

Our study of these polynomials begins with the spectral
function and the orthogonality condition. This is done to
help motivate the recurrence relation [Eqgs. (I1.7) and (I1.9)]
we want to discuss.

Let p(6) be a bounded, nondecreasing function on
[ — m,7] with an infinite number of growth points and with

4

L7 dp@o.

1
2r ). D

We are to construct polynomials®™ ¢(Z,n), n=0,1,2,...,
Z=e¢", such that:

(1) #(Z,n) is a polynomial of precise degree » in which
the coefficient of Z” is real and positive,

(i)
% HZ WP Zm)dp(6) = 8(n.m)’
nm=0,1,2,. (11.2)

Using standard orthogonalization procedures (see Sec. IV)
one finds

#Zn)=[D,_,D,]”""?

C, c, - - . C*,l

C : o Clag

% , (IL.3)
Cn—l C‘l

1 y A ce . Z"

where
1 (" ;
C" - — in@ —
- f_”e dp(0), n=0,+1,+2,
(IL.49)
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and
C, C., C., PR C'_'l
C, C, C, C_, i1
Dn: ’
Cn Cnfl Cn—Z ot CO
(IL5)
n=12,3,,.

[Equation (I1.3) also holds for n =0 provided one defines
D_l = 1.]

The coefficients of Z" in #(Z,n) can be shown from Eq. (11.3)
to be

(1L.6)

D, ,\?

K(n)=( ) ] n=0’1929""
Dy

The theory of positive Hermitian forms tells us that the D,

are positive (see Ref. 2).

From the spectral function p(6) and the orthogonality
condition one can construct the following set of recurrence
relations®*:

K@+
HZn+1)= X w Z¢ (Z.n)

a(”+l) ny
+~—K(n) Z'¢(1/Z,n), n>0 aLm
and
= K+ 1 -
1 H=2T
¢ (1/Zn+1) K Z¢(1/Z,n)
ant+l) ., (IL.8)
K Z ~"$(Z,n), n0,
where
a(n)=¢ (0,n). (IL9)

From Eq. (I1.7) and condition (ii) it is not hard to show that
the leading coefficients of ¢ (Z,n),¢ (1/Z,n+ 1), and

& (Z,n + 1) satisfy the relation
K(n+17—K (1) =le(n+ 1) (IL.10)

Itis convenient to view ¢(Z,n) and & (1/Z,n) as the com-
ponents® of a vector function ¥(Z,n), where

wzn=(57m)

The recurrence relations now assume the simple form
U(Zn+1)=A4 (n)WZ,n) (I1.12)

(IL11)
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with

Z b(n+1)Z"
An)= [- , I1.13
@W=at)s o nz -z (r13)
where
Kn+1
a(n)= ———= 11.14
(n) X ) (11.14a)
and
D
bt ly= 20ED 11.14b
(D) K(n+1) ( )
At times we will find it more useful to work with
$*Zm)=2"¢ (1/Z.n) (IL15)

instead of ¢ (1/Z,n). Equations (I1.11), (IL.12), and (I1.13)
now become

[ ¢(Zn) .
W*(Z,n)—( p *(Z,n)) 11.11)
satisfying
YK Zn+1)=A4*)¥Y*(Z,n) (I1.129)
with
oy z b(n+1) ,
A (n)—a(n)[b—(n+1)z 1 ] (I1.13)

One should note, because of Eq. (11.10), the a(n)’s and b (n)’s
are not independent. In fact

1
a(ny’

=1—pp (n+1)f (11.16)

and since a(n)? is positive from Eq. (I.14) and condition (i),

b(m)<1. (1.17)
Thus given a sequence of complex numbers { b (n)} satisfying
Eq. (I1.17) one can construct a sequence of polynomials us-
ing Egs. (IL.11), (I11.12), (I1.13), (I1.16) and the initial
condition

#Z0) = 1/V C, >0. (IL18)

We will now take the above equations and the initial condi-
tion as the fundamental equations in our discussion of ortho-
gonal polynomials.* ™

As afirst application, let us examine special cases of the
following equation,
0 -1
1

0 )"’*‘“(Z’,n+1)

l1”“‘”(Z,n-+—l)(

. 0 —1
=P *(Z.n)A4 (I)T(n)(1 o )
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XA "P(n)¥ ¥ (Z'n)

—vvaman], 5 PO

z b(n+ 1)]
_ wr2(Z' ), (11.19)
vz @
which is
=W*(“(Z’”)(ZOI _OZ)W*(Z’(Z',n). (11.20)

(47 means a transpose here.) Let us set Z = Z' (Wronskian
theorem). Equation (I1.20) becomes, using Eq. (11.15),
0 -1

e (Zn+1
1 0 ) @n+1)
0 -1
1 0

T(Zn+ 1)(

=y ’(Z,n)( )SI"Z’(Z,n)

EW[‘[" 1 ),wz)].
Thus the Wronskian W is independent of n.

With ¢V’ = ¢‘*’ (Christoffel-Darboux),** Eq. (I1.20)
becomes

¢*Zn+ DHZ'n+ 1) —¢(Zn+ DP*Z',n+ 1)

=Z'¢*2Z,m)¢(Z',n) — Z¢ (Z,n)p *(Z',n).
For now let us assume that |Z’| = 1. Multiply the above
equationby 1/Z "+ ! = Z'*+ 'and divideby 1 — ZZ"'. This
gives us

$*Zn+ Ng*Z'n+1) —¢(Zn+DéZ'n+1)

(IL.21)

(I1.22)

1-2Z'
_ $*Zme*Zn) — ZZ'$(Z,n)d (Z'n)
1—-2Z2Z" '

Adding and substracting ¢(Z,n) $(Z,n) to the above equa-
tion, then taking the complex conjugate, yields

*Z'n+ D*Zn+1) —dZ',n+ D)PZn+1)

1-ZZ'
_ $*Z'm¢*Zn) —¢(Z'n)d(Zn)
1-27Z'

+ ¢ (Z,n)d (Z',n). (I1.23)
Since the numerator and denominator in the above formula
are polynomials in Z’, Eq. (I1.23) can be continued to|Z'|-~1
Iteration down yields the Christoffel-Darboux formula,
N Z' n+1)¢*(Zn+1) - Z' ;n+ 1) Z,n+1)
1-2Z7'

=S 9@ne@n.

(11.24)

lil. JOST FUNCTION

In scattering theory an important role is played by the
Jost function. It can be shown that the Jost function is identi-
cal to the Fredholm determinant of the radial integral equa-
tion for the /=0 radial wavefunction.” As such, its zeros in
the Imk > O plane give the values of the bound state energies,
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and its derivative evaluated at these zeros is proportional to
the bound state normalization constants.

As analogous function can be defined in the discrete
scattering theory as applied to polynomials orthogonal on a
segment of the real line and it has been shown that this func-
tion plays an important role in the theory of these orthogonal
polynomials.'

In this section we define the Jost function and describe
some of its properties.

Assuming thatlim,___b (n)=0, Eq. (I1.13) becomes for
large n,
Z 0
°— i = ) II1.1
ar=im aw=[¢ ;) o

Proceeding formally, we introduce two auxiliary solutions,

_(94Z,m)
W,(Z,n)——( i (Z,n)) (11L.2)
and
_ (2
W_(Z,n)—( » Z’n)), (I1L.3)

satisfying Eqgs. (I1.12) and (11.13) where the components of
¥, are defined by the boundary conditions

lim |¢, (Zn)—Z " =0, |Z]|s] (I11.4)
and
lim |, (Zm| =0, |Z|sl (111.5)

This is possible since the components of ¥ uncouple for
large n. From Eq. (11.20)

Wiy, v ]=1. (111.6)
Thus ¥.(Z,n) and ¥.(Z,n) are linearly independent and
VZm)=f(Z)V(Zn)+fAZ)V(Zn), |Z|=1,(1ILT)

where

0 1
fe=x¥ (Z,n)( 4 0) V. (Zn) (I11.8)
which in component form is
FZ)=¢Zm)b(/Zn)~b(Zm)p(Zn)  (IILY)

and
S(ZY=¢(Z,n)d (I/Z,n)—ﬁ(Z,n):ﬁ_(l/Z,n). (I11.10)
For|Z|=1 Egs. (11.13), (I1.14), (111.4), and (II1.5) show that

$(1/Zn)=0(Zn), JZn) =¢(Zn),  (IL11)
and

6.(Z.n) = $(Z,n).
Therefore,

(2Z) =f(2) (1IL12)

for|Z|=1. Because f.(Z ) is independent of , it is convenient
to evaluate Eq. (I11.8) in the limit n— o since there ¥.(Z,n)
assumes a simple form. In particular
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f(Z)=lim Z"$ (1/Z,n)= lim ¢ *(Z,n).

A—> o0 H——>

(II1.13)

We shall call £.(Z ) the Jost function for polynomials ortho-
gonal on the unit circle since it will be shown to play the same
rolein the theory of these polynomials as the analogous func-
tion does in scattering theory.

In order to investigate the properties of the Jost func-
tion, we will find it convenient at this point to introduce the
techniques of Banach algebras. Thus, let 4 denote the class
of functions integrable on [ — 7,7] with

f@)= 2 f(K) ¥ (I11.14)
where

I (K< 0.
A is a Banach algebra® with norm

A =2 &) (IT1.15)

Let A * and 4 ~ denote those functions in 4 which are of the
form

g(0)= Ki g(K)e'™? (111.16)
and )
h(@)= 20: h(K) &%° 1117
K=~
respectively. A * and 4 - are also Banach algebras.
If
S 1™ <, (11L.18)

then it has been shown that £.(Z) is
(i) analytic inside the unit circle and continuous on it,*
(ii) nonzero inside and on the unit circle,***-!!
(iii) an element of 4 *.*°

As to the properties of ¢.(Z,n) and .(Z,n), we show in
Appendix A that if {5 (n)} satisfy Eq. (IIL.18), then ¢.(Z,n)
and ¢.(Z,n) are analytic inside and continuous on the unit
circleand they are elements of 4 *. Throughout the rest of this
paper, we will assume that {b (n)] satisfy Eqs. (I11.18) and
(11.16).

IV. CONSEQUENCES

Having defined the Jost function and examined some of
its properties in the previous section, we now investigate the
role it plays in various properties of orthogonal polynomials.
In particular, we derive the following:

(i) (orthogonality relation)
1 m

Y @ (Z,n)(Z,m)dp(0)
=é(n,m), Z=2¢€% mn=0,12,-, (av.1
where
de
dp(0)=0(0)d0 = ————; (IV.2)
1£@2)|?
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(i)

S(Z) =exp(— 1/4m)

— T

1n0(0)( expi0) +Z )dB,

exp(ib) - 2Z

1Z|<1. (IV.3)
To obtain the orthogonality relation [condition (i)],** exam-
ine the following integral
I = __1_ ¢*(Z!n)¢ (Zrm) da, 7= eie’

2rd f(Z)

n>m.  (IV.4)

Solving for ¢.(Z,n) in Eq. (I11.7) and then substituting the
result into Eq. (IV.14) using Eqs. (II1.11) and (II1.12) yields

L $EZNIZm) 4,
£(Z)

(T 4@ Em) 4,
2r J_x f(Z)|?

L[ SEnsEm 4
7@
(IV.5)

In order to evaluate these integrals, we need the following
limits:

z=2¢% n>m.

(a) 11m¢ (Z,n) = b (MK (0) H a(i) = a(n),

i=1

K O] at)=2Z ~"K (),

=1

(b) Ilzi_rg(ﬁ /zZn=2
(IV.6)

© lim.Zm = 2" 1_] a)=2Z" I; ((:))
(d)

hm¢ (Zn)= —Zb(n+1) H a())

i=n

7z K(o) an+1)

Kn) Kn+ 1)’
where Eq. (I1.14) has been used. These limits are easily ob-
tained using Eqgs. (IL.11) and (11.12) and the boundary condi-
tions the functions satisfy.

Returning to Eq. (IV.5), take the complex conjugate of
the second term on the right-hand side. Now using limits a
and b above and the fact £.(Z )=£0 for |Z <1, it is easy to see
that this term is equal to zero. The term on the left-hand side
is evaluated using limits b and c and is equal to zero for n > m
and one if n=m. Combining the above results, one finds

$EZn)$Zm)
2 | a0 = s

Z=¢% n>m. (AV.7)

For m>n examine the integral
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L (7 ¢Zm)d(Z,n)

= — T T 1. dé,
2 J-n  SfAZ)
z=¢% m3n. av.8)
Using the above procedures, we obtain
J HZm)YZn) 46 = 5(n,m)
27 J & FXVALE
Z=¢e%, m>n. (IV.9)

Taking the complex conjugate of the above equation and
combining it with Eq. (IV.7), gives

1 ¢(Zn)¢(2m) 46 = 8(nm)
2 J- 1f(Z)]? ’

Z=¢% nm=0,12,. (IV.10)

This result allows us to identify the weight function with the
Jost function in the following manner

o(O)= |f(Z)| 2 av.11y

Note that from the above equation, properties ITI(ii)
and III(iii) and the Wiener-Levy theorem'? o(0) is an ele-
ment of A. [Baxter','* has shown that this is a necessary and
sufficient condition on o(6).]

Usually in the theory of orthogonal polynomials o(8) is
given and f.(Z ) must be determined. This can be done using a
modification of the Poisson integral formula to give’*'*

FAZ) = exp(1/27) f j 1,,0(9){ gigzg___tg] »
1Z|<1. (IV.12)

V. INVERSE SCATTERING THEORY

In the previous section the methods of scattering theory
have been used to study orthogonal polynomials. In this sec-
tion we introduce the techniques of inverse scattering the-
ory. Besides being of interest in their own right, the results
obtained in this chapter will prove to be very useful in our
discussion of the asymptotic properties of orthogonal poly-
nomials (Sec. VI) and Szeg6’s theorem (Sec. VII).

We begin with the derivation of the discrete analog of
the Marchenko equations. Since ¢.(Z,n) and ¢ (Z,n) are ele-
ments of 4 * (see Appendix A), they can be written as

o6(Z,n)= i A(nnHZ"

n'=n

V.1
and

b(Z.n)= il Ay(n,n)Z",
where Eq. (IV.6)7has been used as a guide.

Substituting Egs. (V.1) and (V.2) into Eq. (II1.7) and
using Eq. (IIL.11) yields

(V.2)

+ 3 4nmS@)ZY, ZI=1 (V.3

n'=n
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and

$/Zn) _ TN Z "
a2t
$ 4mn)s@)z", (V.4)
where
s@zy=12) _ 12D 7y v.5)
f2Z) SZ)

Note from properties ITI(ii) and III(iii) and the Wiener-
Levy theorem, S (Z )isaelement of 4. Multiplying Egs. (V.3)
and (V.4) by Z™ ~ '/2mi and integrating around the unit cir-
cle gives

O=Hynm) + S Ann)F (0 +m),

mn>0 (V.6)
and
Snm) —— 2, N
—2" =A(n,m) + Ay(n,n")F (n' +m),
Al(n’m l( ) nél i
m>nzl, (V.7)
where
’ n+m-—1 dz
Fin'm)= 9 S(Z)Z Pyt [Z]=1. (V.8)

Salving for 4,(n,m) in Eq. (V.6) and substituting the result
into the complex conjugate of Eq. (V.7), gives the discrete
analogs of the Marchenko equations

O=a(nm)+G(mm)+ S a(m)GUm),

I=n+1
m>n (V.9
and
1 oo
=14+G(n,n)+ a(n,lG (I,n),
Ay(n,n)’ 1=n2+]
n=m, (V.10)
where
GUmy=— 3 Fl+n)Fi'+m) (V.11)
n'=1
and
An,l)
Jy=22" 2 V.12
a(n,l) ) (V.12)

Since S(Z) is an element of 4, and ¢.(Z,n) and di(Z,n) are
elements of 4 *, all manipulations leading to Egs. (V.9) and
(V.10) are justifiable.

Solving Eq. (V.11) for a(n,m), using Cramer’s rules
yields

1 + m

det[14+ G >

n+1

a(n,m) = (V.13)
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with

114G+ 1Ln+1)
Gn+2n+1)

Gn+1n42)
1+G(n+2,n+2)

G(n+1,n+3)
G(n+2,n+3)

Gn+3n+1 G 3, 2
det[1+G 1=, = ( +. +1) (n+3n+42) 1+G(n+3,n+3) (V.14)
| s 4 m is the same except the mth row is replaced by — G (n,n + 1), — G (n,n + 2),---. For example,
—~Gnn+1) —G(n,n+2) —Gnn+3)
Gn+2n+1) 14+4Gn+2,n+2) G(n+2,n+3)
Gn+3n+1) Gn+3n+2 1+4G(n+3,n4+3
Hesr = ' ( _ ) ( . 3 (V.15)
Subsituting these results into Eq. (V.10), yields element of 4 imply that det[1+G ]2 >0.]
1
C
Ay onsequently,
1+G(n,n)jdet[1+G 1>, ,+ 2 , det[1 +G 1>, 2
— [ (n n)] € [ + ]n+l+ I—n+lHlG(tn) , (V16) Al(n’n)=( { ] +1) (V.18)
det[1+G ]z, det[1+G 7
which s’ and substituting this into Eq. (V.12) using Eq. (V.13) yields
det[1+G 1= [l 4
1 _ defl+Gi7 V.17 A ])= o . (V.19)
A(nny  det[1+G 12, , (det[1+G | rdet[14+G 17, )

[This equation, Eq. (IV.6) and the fact that S(Z ) is an

Z’l
1 G(n+1,n)

(Z.n) =
gz [det[1+G 12det[1+G 17,12 |Gn+2,n)

To relate the coefficients in the recurrence relations to
the solutions of the Marchenko equation, we begin by writ-
ing Eq. (I1.12) for ¢. in component form,

(Zn+1)=a(m){Zo.(Zn)+b (n+1)Z"$(Z.n)}  (V.21)
and
Zn+ D=a(m)[1/Zd(Z,n)

+b(n+1DZ "$(Z,n)] (V.22)

Subsituting in Egs. (V.1) and (V.2), multiplying Egs. (V.21)
and (V.22) by Z ~ "~ 2/2mi and Z ~'/2i, respectively, and
integrating around the unit circle yields,

Al(n + 11" + 1) =a(n)[Al(n’n) +b (n + l)AZ(n, 1)]
and

0=a(n)A,(n,1)+a()b (n+ 1)A4,(n,n).

(V.23)

(V.24)

304 J. Math. Phys., Vol. 20, No. 2, February 1979

Using these results in Eq. (V.11) gives

Zn+l Zn+2
1+G(n+1,n+1) Gn+1,n+2)
G{n+2,n+1) 1+G(n+2,n+2) (V.20)
f
Therefore,
Az(n,l) -
—Z =—bh(m+1). V.25
Ann) (n+1) (V.25)
Using the above equation and Eq. (IL.15) in Eq. (V.23) gives
A\(n,n)
= V.26
al) An+1Ln+1) ( )

We now turn our attention to the derivation for another
set of equations used in inverse scattering theory, the Gel-
"fand-Levitan equations. Given a system of orthogonal poly-
nomials {#°(Z,n)} with weight dp°(8), satisfying Eqgs.
(I1.11), (I1.13), and (I1.17), we wish to find polynomials
orthogonal with respect to the weight dp(6). Writing

$Zny= 3 K (nidg*Z.i), V.27
=0
The orthogonality condition
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L j 6 Zn)b (Zm)dp(8) = 6(n,m) (V.28)
2T
is equivalent to
L f 8 Zn) $Z.m) dp(6) = %‘—%’) ,
n>m.  (V.29)

Substituting Eq. (V.27) into Eq. (V.29), yields the discrete
analogs of the Gel’fand-Levitan equations,

h ) -+qnm)+ S b (nda(lm)=0,
=0

n>m (V.30)
and
1 n—1
=1
K Gy +q(n,n)+ I;) h (n,0 )g(l,n), (V.31
where
q(m,l)
= [ 4%emE @D 1p©) - p©)) (V-32)
2 J_»
and
_ K (n,m) 1
h (n,m) Xy o (v.33)
Solving Eq. (V.30) using Cramer’s rules, yields
|t
Alnm)= ——— | V.34
(o) det[1+4¢])a~! ( )
where
det[1+4]3~"
14+-¢(0,0) 4(0,1) ¢(0,2) g(0,n—1)
g(n—1,0) < l4+q(n—1,n-1)
(v.35)

| |-~ is the same as this except the mth row is replaced
by —g(n,0), —g(n,1), —g(n,2),-. For example,

N
—g(n,0) —q(n,1) —gq(n,n—1)
g(1,0)  1+4(1,1) q(ln—1)
g(n—1,0) l4+g(n—1,n—1)

(V.36)
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Subsituting Eq. (V.34) in Eq. (V.31), gives
(det[1+4]3~ """

K (nn)= (V.37)
det[1+4]5
Using this and Eq. (V.34) in Eq. (V.33), yields
n— 1
K (n,m)= b (v.38)

(det[1+q1adet[14g10-")"2"

Now substituting Eq. (V.37) and Eq.(V.38) into Eq.(V.27)
gives

1

¢ (Z’n)‘:
(det[1+g]idet[1+¢)2~ "'

1 +¢(0,0) ¢(0,1) q(O,n)

q(1,0) 144(1,1) q(1,n)
X

q(n - 1,0) q(n - l,n)
$°(Z,0) $°(Z,1) ¢ %(Z,n)
(Vv.39)

To show how the {K (n,m)} are related to the coefficients of
the recurrence formulas, we begin with Egs. (I1.11), (I1.12),

and (I11.13) for ¢(Z,n + 1). Multiplying them by ¢ °(Z,n+ 1)
and integrating with respect to dp®(@) yields

1 J'" 5@ T 1) 6°Zn + 1)dp®)
21T -1

= ar) - f_” 8%Zn + 1Z$ (Zn)dp*(0)

T

¢°Zn+1)

— T

+a(mb(n + 1) %

X Z "8 (Z,n)dp(8).

(V.40)

Using Egs. (V.27), (V.28), and the recurrence formula for
#°(Z,n) gives

K(n+1n+1) _ a'(n)

Koo prd (V.41)

If a°(n)=1 for all n, then using Egs. (V.41) and (V.26)
yields the following relation between the solutions of the
Marchenko equations and the Gel’fand-Levitan equations

J.S. Geronimo and K.M. Case 305



Kn+1l) K@n+1ln+1)

W= W - Kan

A(n,n)

TR %) N— (V.42)
A(n+1n+1)

It is worthwhile to notice that

Kn+Ln+DA(n+1,n+1)=K (n,n)A,(n,n)=C, (V.43)

A(n,n)=1,
(V.44)

C, will be evaluated in Sec. V1. Since lim
K(0)=K(w,0)=C,.

n—» o

VL. APPLICATIONS

In this section we investigate the asymptotic form of the
orthogonal polynomials using the Marchenko equations dis-
cussed in the previous section. We also derive new sum rules
satisfied by the coefficients in the recurrence formulas.

A. Asymptotic formulas

We are now in position to find the behavior for large n of
the polynomials associated with ¢(6). Starting with Egs.
(11.7)

B (Zn)=|f(Z)| [€%C3(Zn)+ePOF(Z,n)],

Z=¢€% (VLD
where
FZ)=|f(Z)|e ", (V1.2)
and using Eqgs. (V.1) and (V.2) gives
¢ Zm)=12)] [e"6<9> $ ammz"
+e= @ S Lmn)z 7). (VL3)

n'=1

The asymptotic behavior of ¢(Z,n) can be investigated using
the Marchenko equations, Eq. (V.9) and (V.10), and pertur-
bation theory. In the first approximation 4,(n,m)=0 and
A(n,m)=58(n,m). Formula (V1.3) becomes

d(Zn)=f(Z)Z" (V1.4)
In the next approximation
A(nn)=1— w , A(nm)=G(mm),  (VL5)
and
A(n,m)=F(n+m). (VL.6)
Thus
s@m=172)l|(1- G4 Yzres
1@ i G (n,m)Z ™ —e 8®
m=n+1
X Y F(n+m)Z ""). (VL7
n'=1
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Further iteration of Egs. (V.9) and (V.10) will give succes-
sively improved asymptotic formulas.

B. Sum rules

From the explicit form for £.(Z) in terms of o(6), one
can obtain a number of identities which the coefficients in
the recurrence formula satisfy. First expand £.(Z ) in a power
series in the vicinity of the origin

f(Z)=Co+CZ+C,Z 2+ (VL8)
or
f*(CZ) N+ dZ+dZ o (VL9)
where
d= € (VL.10)
=G .

We wish to express the above coefficients in terms of the
coefficents in the recurrence formula. In Ref. 14, a systemat-
ic derivation of the sum rules is given. However, here we
shall be content to illustrate the first few. Thus,

Co=K () (VL11)
C=K(w) 3 4, (VL12)
n=0
and
=K () $ 6@Fa+2)
n=0
+$am $ 4 (m)), (VL13)
n=0 m=n+2
where
Am)=b'WEm+1) (VL14)
and
PO)=L. (VL15)

To see how the coefficients are related to the moments of
Ino(@), we use Eq. (IV.12). Hence,

Inf(Z) = (— 1/4m) | 1na(g)(1+zi (Z/Z,)f)de’

i=1
Z' =é% |Z|<1. (VL16)
Substituting in Eq. (VI.8) and using Eq. (VI.11) yields

Co=K () =exp(— 1/4m) fﬁ Ino(6)d6. (V1.17)

[See Eq. (V.44).] Now using Eq. (V1.8) and the above result
gives

(Z = "
1nf—(col :1n(1+ s d,-Z)=(— 12m) | note)

i=1

8 2 (2/2)ds, Z'=e". (VL18)
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Expanding the In and equating coefficients of Z' yields the
desired relations. Thus, fori =1

Sam=di=(-1/2m) Jﬂ Ino(8)e~°d6,  (VL19)
n=0 -7

and for/ =2,
Sombn+—3 3 a0yp— ¥ ama@m+1)
n=0 n=0 n=0
2 T
=d,— % =(—1/27) f Ino(9 e ~ 2d6.
) - (V1.20)
Vil. SZEGO’S THEOREM

In this section we discuss Szegd’s theorem on Teoplitz
determinants. This theorem was first proved by Szegd'® with
the assumption that the derivative of the weight function, for
a set of polynomials orthogonal on the unit circle, satisfied a
Lipschitz condition with some positive exponent. Since then,
the theorem has been proved using Banach and Hilbert space
techniques with the subsequent weakening of the conditions
placed on the weight function.'”® In this chapter the theo-
rem is proved solely from the point of view of orthogonal
polynomials. Only the recurrence relations and some prop-
erties of the Jost function are used. The techniques of inverse
scattering theory are applied to the problem to find correc-
tion terms to the asymptotic formula.

We wish to prove the following: If

o0

S 16| <x and 3 nlym)|i<w, (ILIS)
n=1 1

n=

then

3 inaG—1p= ¥ n|ym) )2, (VIL1)

i=1 n=1
where

ym= = @,

277' —
n>l, Z=¢€% (VIL2)

From properties III(i) and II1(ii),

=17 mp@)ede =0, n>1. (VIL3)

— T

Taking the complex conjugate of Eq. (VII.3) and adding it to
Eq. (VIL.2), then using Eq. (IV.2) yields

_ _1_ i — in@
¥(n) = = f_ﬂlno-(e Ye ~ 640 (VIL4)

Using the properties of £.(Z), it is possible to show that!*

2" wizymi@y zas
277' — T
= i n I 7/(”) | 2’ Z=ei0, (VII.S)
n=1

Since ¢*(Z,n)—f.(Z ), uniformly in norm'-*
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l T

lim — Ing *(e%,n)Ind *(e,n)e — °d0
n—ow LT J—n
- ?1— Inf(e®)Inf.(@®) e - “db. (VIL6)
7T J—-7

In order to continue further, we show that

L7 (2EED gk — e *Zi —
Py _”( $%ZD )Z In[K(@ — Dp*Z,i—1)]d6

_1 (" (#*Ei-D
Y f_,( P*Z,i—1) )
XZ " In[K i — g *(Z,i — 1)]d6.

Evaluating the above integrals by means of residues, reduces
the above expression to

LB Zi—]) it $MZ i)

In [ =2t L mn [ 2
=1 K(l—l) j=1 K(l—l)

where Z,,and Z;_, ; are the zeros of §(Z,/)/K (i) and
& (Z,i—1)/K (i—1), respectively. To prove Eq. (VIL.8), we
start with Eq. (II.7). Thus,
i1 ¢ ‘(Z(i— IJ)’i_ 1) = i K (i) ¢ (Z("¥ IJ)’i) ) (VII9)
j=1 K@-1) =ra® K@

This is so because at Z = Z; | , Eq. (I1.7) becomes
PMZi_1pi— 1) _ 1
K(i-1) a(d)

(VILT)

, (VILS)

¢ (Z(i - 1J)v’)-
(VIL.10)

Since the constant multiplying the highest power of Z in
HZ,))/K (i) and &(Z,i — 1)/K (i — 1) is equal to one, the term
on the right-hand side of Eq. (VIL.9) can be rewritten as
_( K—(i)- )i“l 714 (Z('}l pl— 1)
a(i) = K@-1
But at a zero of ¢(Z,i), we have from recurrence formula
L
¢ (Z(i,I)’i -1 .
K@i-1

(VIL11)

- a([) —1.— ¢ *(Z(i,l)’i — 1)
KW zZ, kG-1)

(VIL.12)
Thus Eq. (VIL.11) becomes equal to

=(K_(’2)“' : a(i)( —1 )¢*(Z<f,1)"'—1).

a(i) =K@\ Z,, K@i-1
(VIL.13)
Now the product of the zeros of ¢ (Z,)/K (i) is
d a(@y)
—Z, === VIL
-2 % (VIL9)
Therefore, Eq. (VIL.13) becomes
i @M Zpi—1)
- =) VIL15
=1 K@-1 ( )
proving Eq. (VII.8). Note that
1 (" ( ¢*(Z1) ) -
—— L =2 1 ZInK * =
) N\ gz (0)p *(Z,0)d6 = 0.
(VIL16)
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This is easily seen by taking the complex conjugate and then
using the residue theorem. Now the left-hand side of Eq.
(V11.6) can be rewritten as

el ()

2 R—» a0

X Z Ing*(Z,n)"'do
which is, using Eqs. (VI1.7) and (VIL.16)
- 1 ¥ (Z.))
lim z (I/ZW)J ( 572 )Z

n—oo ')

(VIL17)

(VIL18)

><1n(K(i—l) $*(Zi—1) )d&
K@  ¢*Z0)

multiplying Eq. (11.8) by Z"* ' then solving for Z¢ (Z,n) and
substituting the result into Eq. (I11.7) yields,
K (n)¢ *(Z,n)

=Kn+1)p*Zn+1)—aln+1)é(Z,n+1) (VIL19)
or

K (n)¢ *(Z,n)

Kn+Dop*Zn+1)
:(1_ a(n+1) ¢(@Zn+1) )
K(n+1) ¢*(Zn+1)

Thus, Eq. (VII.18) becomes

(1/2w)f ( 6+ ZD *((5:)) )Z

(VIL.20)

= — lim

"—>w1—1

Xln(l - E $ZD )dQ.

. (VIL21)
K@) ¢*Z.J)

The only contributing residue is at Z=0. Thus, Eq. [VIL.21)

becomes
. L, a@i) |2
= — lim tln(l—— — ), VIL.22
A Tk Vi
where Eq. (IV.6) has been used. Letting n— oo yields
i K (’) - 2 nly(n)]* (VI1.23)

Using Eq. (11.14) gives us the desired resuit. Exponen-
tiating each side and using formulas (I11.6) and (VI.17) gives
the more familiar result

. D,(0) 3 .
nhg; m =exp ,,Zl niy(n)|?, (VIL.24)
where
G(0)=K(x)". (VIL.25)

To find the correction terms to Eq. (VIL.24), let us return to
Eq. (VI1.23)."? Using Eq. (V.42), Eq. (VI1.23) can be rew-
ritten as
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_ K@
i=1 K (i — 1)2
& g AGY

A(G—1i—1) + > nlym|

i=n+1

(VIL.26)
This becomes, using Eqs. (I1.6) and (V.17),
InD, (0)+ (n+ DIn[K (m)A.(n,n)]

= Y n|y(m)|*+Indet[1+G ], .. (VIL.27)

Now using Egs. (V.43), (V1.17), and (VIL.25) yields
InD, (o) —(n+ DInG (0)

= 3 nlym | +Indet[1+G 17 (VIL.28)

n=1

CONCLUSION

In this article the ideas and techniques of scattering the-
ory have been used to investigate the properties of ortho-
gonal polynomials. We hope that we have shown that the
methods of scattering theory provide a unified basis for ob-
taining many results concerning the theory of orthogonal
polynomials. As in the theory of polynomials orthogonal on
a segment of the real line, an important role is played by the
Jost function. The similarity of the roles of the Jost function
in these two systems of polynomials is striking.

Using the techniques of inverse scattering theory and
the properties of the Jost function, new asymptotic formulas
have been developed and a set of sum rules satisfied by the
coefficients in the recurrence formula has been presented.

APPENDIX A: PROPERTIES OF ¢.(Z,n) AND
é.(Z,n)

To investigate the properties of ¢.(Z,n) and dAZ.n)
define

¢a(Z’n)
?(Z,n)=(¢ﬂ(1/z’n)), n>l, (AD)
satisfying Eq. (I1.13) with
¢ 1/Zn)=—¢,(1/Z,n) (A2)
_ a0 .,
and¢ (Z,1)= X Q) [Z—b(1)]. (A3)

Since ¥ (Z,n) satisfy the recurrence relations for n> 1, define

[edZ)=2W (¥, ), n>1, (A4)
which in component form is
f1a=84Zmp(1/Zn) —$AZ.1)poZ,1);
n>l  (AS)
and
[ a=0ZM)AZ1)—b(Zn)s(1/Z,n),
n>l.  (A6)
In the limit as n— o, Eq. (A5) becomes
fio=limZ"¢,(1/Z,n)
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=— lim Z"$,(1/Z,n). (A7)
To investigate the analytic properties of £, ,, notice that
Zpy(1/Zn) | | Z$(1/Z,))
k@ 1 k@
A8
K (0)2 (A8)

Substituting this into Eq. (I1.8) and using induction argu-
ments, it is easy to see that

Z"$5(1/Z,n) Z"$,(1/Z,n)
K (n) K(n)
1
< xor | H (146 G+ D)),

Zl<l (A9)
and using Eq. (A7) that
f1dZ) _,, 851/Zn)
k() K()
K(O)Z fla+ 1b(z+1)|)( flo+1e G+DD),
Zl<1  (A10)

Thus, f, (Z)is the uniform limit of a sequence of polynomi-
als for [Z|< 1 and, therefore, is analytic inside the unit circle
and continuous on it. Notice that using the above arguments

FodZ) L $(/Zn)
K(oo) K (n)
K(0)2

x[ ﬂ(1+]b(j+1)|)—1],

Z=e" (All)

where [f] is the norm defined in Sec. II. This implies that
S+ a(e®) is an element of 4 *.

Multiplying Eq. (II1.9) by ¢ (Z,n) and Eq. (A5) by
&(Z,n), then subtracting yields,
[¢a(Z’n)ﬂ(Z)_¢ (Zr”)f+a(Z)]

=$.(Z.n) [ (1/Z,n).(Z,n)

— ¢ Zn)bs(1/Z,m)], |Z|=1. (A12)
Now from Eq.(11.21)
& (1/Z,n)b (Z,n)— B (Zm)b(1/Z,n)=W [, ],
ZI=1 (A13)
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which is

=6 (1/Z 1) (Z,1)—¢ (Z,D)p[1/Z,1)=2. (A14)
Therefore,
$.(Z,n)
=3[ (Zn(Z)—¢ (Z,n)f , (Z)],
Z|=1 (Al5)
and ¢.(Z,n) is an element of 4 *. From Eq. (I1.12),
$*Zn) _$*(Zn— 78 @Zn—1)
K@)  K@—1) 245 b (Z K@n—1) (A16)
and
Z"$5(1/Z,n) _ Z"$g(1/Z,n—1)
Kn)y  K@n-1
i ¢a(z’n - 1)

Thus, iterating these equations up and using Eqgs. (I11.13)
and (A7) yields,

f.(Z)=K(oo)(¢ 21 7% 5+ ‘“?)’)) A18)

XK 22
and
~ SeWZ) o GZD
fd2)=K ()2 CED 12 5 hurn 2 )
(A19)

Substituting these equations into (A15) gives,

_ l K(oo) *
¢(Z,n)= 2K (¢ *(Z.,n)p(Z,n)

1 K(oo)

—((Zn)Z"¢s(1/Z,n)]1+ — > K()

x $8G+D ("‘Iéf)” b.(Zn)

$o(Z,i) )

—¢(Z.n) X0

(A20)

This becomes, using Eqgs. (A13) and (A14),
K () k()

- L) 70y 2K(n)ZZb(i+1)

["’(Z’)cﬁa(Z) 6@zm 2EA | @

K (@) K@

Since ¢(Z,i) and ¢,(Z,i) are uniformly bounded in
i,$(Z,n)—>Z" as n— o . Using similar procedures that led to
Eq. (A15), the following formula for ¢.(Z,n) can be derived,

$(Zn) = § [$5(V/ZN(Z) + [, LZ)$(1/Z,n)]. (A22)
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Because the right-hand sides of Eqs. (A15) and (A22) obey
Eq. (IL.13) with boundary condition (II1.4), we see that
¢.(Z,n) has analytic properties similar to as f.(Z ) and

[+ o(Z). Using Eq. (11.13) for ¢ (Z,n), shows us that bAZ,n)
has analytic properties similar to f(Z,n) and that ¢ (Z,n) is
an element of 4.

Notice that once we have found the weight function
o(0) from Eq. (IV.2), it is easy to see that

am- L[ (522)

X [¢(Z',n)—¢(Z,n)]0(0 )db,

Z'=eYZ|<1.  (A23)

Since g(6) is an element of 4 and

Z"$,5(1/Z,n)
¢ *(Z,n)

converges uniformly for |[Z <1, it can be shown*** that

- LD *w(e’e+§)o(0)d9

fiodZ)= _
e
ZI<1,

(A24)
and from Eq. (A15) that
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$AZ,n) =

()

X ¢ (en)a(0)dl, |Z|<1. (A25)
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Covariant perturbed wave equations in arbitrary type-D

backgrounds
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We present an approach to the fundamental tensorial quantities of general relativity which is inherently
covariant and based on the irreducible representations of the Lorentz group, O(3,1). Using this technique,
the wave equations appropriate to perturbing, massless, D(0,s), fields in an arbitrary curved background
are studied and a relationship between the decoupling of (at least) one of the equations and the algebraic
degeneracy of the spacetime is shown. It is then found that sufficient conditions for decoupling the
equations determining both of the radiative components (the extremal helicities) are that the space be of
type D. Using Plebanski-Demianski coordinates to describe such an arbitrary vacuum spacetime (of type
D), we separate the (decoupled) perturbation equations for the radiative components corresponding to spin

s=0,1/2, 1, and 2.

1. INTRODUCTION

In recent years there has been considerable interest in
(linear) perturbations to gravitational fields, as well as test
electromagnetic and neutrino fields imposed on a gravita-
tional (or electrogravitational) background. The study of
such perturbations on a flat background (i.e., with no initial
gravitational field) was begun by Einstein.! However, of con-
siderably more interest for astrophysical problems are per-
turbations away from some model which one expects to re-
present a reasonable idealization of a particular ‘
astrophysical system.? Much time has been devoted to the
study of perturbations away from a vacuum Schwarzchild
background.’ A new level of perturbation capability was
achieved by Teukolsky* who successfully attacked the prob-
lem for the background of a rotating black hole, the Kerr
geometry,’ reducing the acquisition of desired results to the
solution of ordinary differential equations, thereby allowing
an extensive numerical and analytic study of perturbations
in this case. This result was actually quite important not only
for the examination of physically reasonable approximations
to particular astrophysical problems,® but also for a better
understanding of the general structure of solutions of Ein-
stein’s equations—in particular those solutions “‘near” the
Kerr solution.’

It is this second benefit that is of more interest to us
here. However, from that point of view, the Kerr geometry is
only a special case of the much broader class of Petrov type
D metrics. In fact Carter® has already studied the separabil-
ity of various scalar equations in such spaces, while Stewart
and Walker® have made a general study of gravitational per-
turbations to type D spacetimes. In this study the determina-
tion of arbitrary perturbations to a known type D solution of
Einstein’s equations will be reduced to the solution of uncou-
pled ordinary differential equations.

The problem of gravitational perturbations to the Kerr
geometry had been resistant to many efforts until Teukolsky
generated the desired decoupled solution in the Newman—~
Penrose'® formalism. Therefore, more recent studies have
been done almost exclusively in this formalism, or the com-
pact revision of Geroch, Held, and Penrose.!! Because of its
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fundamental use of null tetrads which can be aligned with
the radiation,'? this formalism is well suited to examine the
radiative processes which are of most interest. In addition,
all type D background geometries (such as Kerr or Schwarz-
child) have a pair of doubly-degenerate Debever—Penrose
null directions which may be used to align the null tetrads in
physically relevant directions. However, the procedures
used are not covariant and are algebraically burdensome.
This study develops, instead, a completely covariant ap-
proach to massless field equations of arbitrary half-integral
spin using the irreducible representations of the Lorentz
group most appropriate to each case. This formalism, being
based in large part on the group isomorphism between
0O(3,1), the Lorentz group, and O(3,C), the group of rota-
tions in three complex dimensions, is very similar to that
used by Debever'? and others working with him,' but is ex-
tended to the more general use of other representations as
well and to the utilization of an extensive algebraic super-
structure which reduces many of the complicated manipula-
tions to an algorithmic level.

The equations governing a perturbing massless field of
spin s(with s = 2 for the gravitational case) can be written as
asetof 25 + 1 wavelike equations in which the various differ-
ent helicity components of the perturbing field are coupled
not only with each other but also with the curvature of the
background space, all with four independent variables as co-
ordinates over the manifold. The problem is to decouple the
25 + 1 equations, or some physically important subset of
them, and to then separate the decoupled equations so as to
obtain ordinary differential equations, which can be handled
numerically if necessary. The fact that all Petrov type D
vacuum metrics possess at least two Killing vectors suggests
the possibility of at least partial separation. However,
Debever' has also shown that a conformal Killing tensor is
admitted by all of the type D solutions of the Einstein-Max-
well equations found by Plebanski and Demianski, ¢ referred
to hereafter as PD solutions. Since Weir'” has shown that the
PD solutions include all vacuum, type D solutions, the exis-
tence of this conformal Killing tensor suggests the possibil-
ity, in the PD background geometry, of complete separation
of the massless equations for arbitrary spin.
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In Sec. 2 we first discuss our approach to the usual de-
terminants of a spacetime (affine connections, Riemann ten-
sor, etc.) via the appropriate irreducible representations of
the Lorentz group, defining the projection operators to the
carrier spaces of these representations and establishing a
generalized covariant derivative defined over all these carri-
er spaces. In Sec. 3 we write the usual first order field equa-
tions (the Bianchi equations for gravitation, the Maxwell
equations for electromagnetism) in such a way as to reflect
their inherent helicity structure. These equations are then
iterated to acquire the coupled wavelike equations for each
helicity component. Next general conditions under which
these equations may be decoupled are discussed and this de-
coupling is performed for an arbitrary type D geometry, in
certain specific families of allowed gauges. Our method is
not particularly difficult, algebraically, and allows one to
more or less see the physical meanings of each step of the
derivations. All of this is done without the introduction of a
specific coordinate system. Therefore, if perturbations to
some type D metric other than Kerr are desired, it is not
necessary to start over at the beginning for that particular
case. In Sec. 4, as an addition to the main problem of pertur-
bations to the gravitational field, the method of Sec. 3 is
extended to obtain wavelike equations for massless fields of
arbitrary spin s, corresponding to the representation D(0,s).
It is then shown that the equations for helicity #=+-s com-
pletely decouple, as before, if the background geometry is of
type D.

In Sec. 5 we introduce PD coordinates, still allowing
general vacuum, type D solutions, with a possible cosmo-
logical constant and some electromagnetic parameters.
These include, for example, the accelerating metrics of Levi—
Civita'® (more recently, Kinnersley"). However, only per-
turbations of one spin value at a time are considered. There-
fore, in the case of nonzero electric and magnetic charge
allowed by the PD solutions we either keep the geometry
fixed and perturb the electric field, or, of more interest, keep
the electric field fixed and perturb the geometry (gravitation-
al field), as would be appropriate, say, for small (test) values
of these charges.® The much more difficult problem of
mixed perturbations involving more than one nonzero back-
ground field and simultaneous perturbations away from
these values is still being studied.”* We show then that the de-
coupled equations for the radiative helicity components (he-
licity values of +s) separate only for the spins 0, §, 1, and 2,
for an arbitrary vacuum type D background. Lastly, we note
that the results dervied here for these separated equations
have already been announced without derivations in Ref. 22.

2. DEVELOPMENT OF A COVARIANT
FORMALISM

The space-time under consideration may be viewed as a
four-dimensional hyperbolic Riemannian manifold en-
dowed with a line element, ds* represented by a (complex)
null tetrad basis of 1-forms,

g=ds*=2'® ¢+2'® e“:gaﬁe"@eﬁ, 2.1)
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where e' = ¢, while ¢* and e* are real. (The bar is used to
denote complex conjugation.) The tetradial indices are ma-
nipulated by ‘

0 1 O
1 0 0 O

ga/} = 0 0 0 1 » (22)
0 0 1 0

and its inverse, g, which is numerically the same. (See Ref.
23 for a statement of our sign and index conventions.) We
will investigate the structure of the space-time manifold
through the language of differential forms.* The first struc-
ture equations

de” = Nw (2.3)

serve to define the connection 1-forms (without torsion),
@ .5, Which are skew in a,B, because of the constancy of g 5,
by

0= dg,p = 20, (2.4)

Cartan’s second structure equations then determine the cur-
vature 2-forms

R p=0.5+ 05 N (2.52)

whose components determine the Riemann tensor by
(2.5b)

A specific set of basis forms are defined by the metric
only to within the Lorentz transformation, N 7, such that

(2.6)

o
'011/3: %Raﬁygey/\e .

¢’ =N"e"% 8, =80 =N, N8y

In general, more complicated tensors will transform, under a
redefinition of the tetrad, with tensor products of these ma-
trices. However, it is well known that valuable simplifica-
tions occur if one breaks any particular tensor up into its
parts which transform under particular irreducible represen-
tations of the fundamental group—in this instance the Lo-
rentz group, O(3,1). Since we are already using complex
quantities in our tetrad so as to better study null quantities,
we look for all representations of O(3,1) irreducible over the
complex numbers. [It is actually only the component of
0(3,1) connected to the identity that is under consideration
here.] All such finite-dimensional representations are well
known.? They may be specified by a pair of half-integers, J,
J =0,4,1, %, and are denoted by D (j,;/'). (Each index sepa-
rately behaves as a usual angular momentum ‘‘quantum
number” of the type associated with representations of the
group of rotations in three dimensions.)

Associated with each representation D (jj") is the carrier
space on which it acts, denoted by V (j,j"), which is a vector
space of dimension (2j + 1) X (2/' + 1). These vector spaces
are of course isomorphic to subspaces of particular tensor
spaces over the manifold. Therefore, it is convenient to de-
fine projection operators, acting on the (graded) tensor alge-
bra, which map tensors into particular carrier spaces. We
use Z (n; j, /') to denote the mapping into ¥ (j/") restricted to
act on tensors of order n, when an abstract symbol is needed.
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Various specific such projections will be needed often,
suchastheonesto V' (0,1), V' (1,0), ¥ (1,1), ¥ (0,2),and V (2,0).
Of the representations, the most important are surely D (0,1)
and D (1,0), which exist because of the group isomorphism of
0(3,1) and O(3,C). We start constructing these projections
by looking at the space of 2-forms, splitting it into two sub-
spaces via the usual Hodge duality. That is, a basis of (six) 2-
forms is found, half of which are self-dual, and half of which
are anti-self-dual.?®

Taking the range of lower case Latin indicestobe + ,0,
— , a basis for self-dual 2-forms is the set

1 2 3 4
enet+ene ,\el), 2.72)

F= ;_ (e“ Ael, —
V2 V2

and a basis for anti-self-dual 2-forms is the set
[ — ! (e“/\e1 —eNeteNe e3/\e2)

2 V2

(2.7b)

where the dot over the index indicates their anti-self-dual
nature. Under the transformation of the basis tetrad to an-
other equivalent one via the Lorentz transformations [dis-
cussed at (2.6)], the Z“ transform among themselves ac-
cording to the representation D (0,1). In each of these carrier
spaces a metric g,, (and g,; which is numerically equal to
8.»), suitable for the raising and lowering of in(%ices, is in-
duced by the original metric tensor on the manifold:

0 0 -1
8ab = ’zuaﬁjbyagaygl?b‘ =( 0 1 0 )1 (28)
—1 0 0

which is just the usual metric known from the similar repre-
sentations of the rotation group, for spin-1 particles.

These basis forms satisfy the following useful identities
(see the Appendix as well):

*Fe=F, *F= —T°
2F VTGO TP =gt Ty T =0,

FoFb = 7 T o

—_ %gabg . %nubcg’c’ (29)
whereg =g, " ® €’ is just the metric and %°*is the totally
skew tensor in the carrier space of D (0,1). [This tensor is
constructed from the three-dimensional Levi-Civita symbol
with s = 0 (see Ref. 26); this implies, e.g., that

7 = + = — 1.,..] Several different products are used in
this work, which results in considerable convenience. In ad-
dition to the tensor and exterior products, we use the right
interior product B_} 4 and a specific contraction of adjacent
tensor indices, denoted by a dot and defined over the tensor
space.”’

Since, together, the Z* and £ form a basis for all 2-
forms, an arbitrary 2 -form 7 may be decomposed into 2 sets
of components, 7 and 7%%, which may then be thought of as
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being elements of ¥ (0,1) and V' (1,0), respectively,

=41, NL =17,7°+ 1,77, (2.10)

=211 T =1, T, (fﬁ =2r 17 Q.11
Therefore Z%; (Z %) constitutes a specific realization of
the projection map Z (2;0,1) [Z (2;1,0)].

It is now most convenient to introduce a generalization
of the operator, D, which Cartan? called the tensorial exteri-
or derivative. This operator takes any indexed set of p-forms,
such as e” or £2 5, and generalizes the exterior derivative so
that it treats the set as the components of a tensor and gives
the components of the covariant derivatives of that tensor.
As an example for some set 7%, of p-forms, the (p + 1)-
forms DT “j are given by

DT%=dT %%+ AT —a’s A T,  (2.12)

Therefore, the first structure equations (2.3) merely say that

De* = Q. (2.13)
Additionally, if o is a single p-form,
do=Do=Do,) N e =0,4° N e (2.14)

The above describes Cartan’s original formulation. But
our interest in several different V (j, j') requires that the defi-
nition be extended to include, as well, the indices denoting
components of an element of some such V (j, /). In order to
do this the covariant derivative must be extended to these
spaces, or, better, to each bundle of such spaces, one at each
point of the manifold. We do this in the simplest possible way
by requiring that D commute with the projections Z (n; j, j').
In particular, for D (0,1), this requires that

0=DF°=d Z°+W*, N Z°, (2.15)

where the required connection 1-formsin V' (0,1) are denoted
by W*. Then, using the properties of Z° given in (2.9), it is
easily found that

Wb = ™2 P (2.16)

with an analogous equation generated by D.%°¢ = 0. Also,
thinking about the usual relation between the commutator of
covariant derivatives and the Riemann tensor, we find, for
the tensorial case,

DDV =02,V Q.17

while we also calculate, at somewhat greater effort, that
DDF*° = 5 & C"B{)aBFb. (2.18)

From (2.16) and (2.18) it is clear that the irreducible parts of
@ ,5and £2,;should be determined since they play the role of
connection and curvature in the irreducible subspaces ¥ (0,1)
[as well as ¥ (1,0)], modulo the factor 57°* whose role will be
discussed soon. Therefore, we decompose the connection
and curvature forms:

Wop =0, F g+ 0, % p,
' = TPy 0= FP,,
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"Q(IB = -angaaﬁ + ﬂd‘gdaB’

0°=ZF0 5 0= TP, 2.19)
The 1-forms ® and w* are now decomposed as far as is prof-
itable. In fact, the twelve components of the three 1-forms »®
are just the Newman-Penrose rotation coefficients put to-
gether in a form more convenient for covariant manipula-
tions, except for a multiplicative factor. In explicit manipu-
lations, it is convenient to define a set I, by

— W~ Wiy =I 1
W1, *\/_ y Wy | =1 — 0w ,,
2i

2

p o -7 K
-r aa = \/Ea , \/Eﬂ, — \/5’}/, \/56 y

A U —v T
2.20)

where the assortment of signs reflects the different signature
of the metrics chosen by the present authors and that of
Newman and Penrose.

Since many calculations are done with these quantities,
the D (0,1) forms of several common identities are listed
below:

Q,=dw,—in 0" Aof, Q.21
D (2 ,=0—(second) Bianchi equations, (2.22)
0=DD %*

=n02, A & — first Bianchi identities.  (2.23)

Since the £2, and {2, are 2-forms, they can be expanded fur-
ther to give

‘Qa:ﬂabgb +‘Qab gb’
0,=0,7"+02,,2°.
(2.24)

From the symmetries of the Riemann tensor it is easily
shown that

.Qab' :‘gaﬂﬁgbVéRaﬂY&: ﬂdb ’ (225)

so that there are nine (real) degrees of freedom. In particular
Q,=—2Z T Ry =W "R, (2.26)

Here R, ;=R is the Ricci tensor, while W , ;**, which is
symmetric and traceless on the indices p,A is a realization of
the projection mapping Z (2;1,1). The inverse of (2.26) is giv-
en by

R;tl—%g,u./lR: Wabpzinab" (2'27)

Also 2 ,, = 12, , is clearly symmetric on its pair of
indices, but is not yet irreducible. Instead a scalar portion
may be extracted,
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0°,=0°%,=R=41g"R 4 (2.28)
then we may define the irreducible portion as
Cop=12,~1g 4R, (2.29)

which is symmetric and traceless, and therefore equivalent
to an element of ¥ (0,2). To display this more explicitly a
renumbering operator is introduced,

1

++ + 0
by _ 5

T
V2 \/_EOA

0 1

2
Vit Vh

+

i
s
V2

zZ,*= 54

o 1

1
Vi Va

57 65
(2.30)

where the capital Latin indices take on the five values + 4-,

+,0, —, — —, which label the components of an element
of ¥ (0,2), and the rather peculiar coefficients have been cho-
sen so that the metric induced in V'(0,2) is simply

o 0 0 o 1
b e B o 0O 0 -1 0
8u8=Z2 4" Zp 8, 8pu=]0 O 1 0 of,
0O -1 0 0 O
1 0O 0 0 0
(2.31a)

which is again common in studies of spin-2 systems under
the ordinary group of rotations. [The Z ,* are in fact just the
usual vector-addition coefficients C (1,1,2;a,6,4 ) for therota-
tion group.] Using the renumbering operator we obtain an
explicit realization of Z (4;0,2), namely

Z,P=F L L. (2.31b)
Therefore, the irreducible content of the curvature consists
of

Cy=2,"0,=Z,"R 5, and C

= C , — the conformal curvature, (2.32)

R=20°,=20 ;=R ;— the Ricci scalar,
ﬂab = WabaﬁRaﬁ

= Z 7 y°’R, 55— thetraceless Ricci tensor,

tensor,

which are elements of ¥ (0,2), ¥ (2,0), ¥ (0,0), and V' (1,1), re-
spectively. The C , are just the usual ¥, through #, intro-
duced by Newman and Penrose, modulo constant numerical
factors, which are given in detail in the Appendix.

Asbefore, using D Z ,“® =0 asarequirement inducesa
covariant derivative on ¥ (0,2), which provides a connection
there, described as follows. Let 7', represent some (covar-
iant) element of ¥ (0,2). Then

Alan L. Dudley and J.D. Finley, Il 314



DT ,=dT,—#*,T,, (2.33)
where the 1-forms %24 are defined as
WP gy, (2.34)

and the 754 are the j = 2 representations of the angular
momentum operators which generate the rotation group.
Their appearance in the equations follows from

/aAB = 27 Ach Bdcﬂbda'

In the Appendix the # @ ,*# are displayed along with a few
of their relevant properties. This also indicates the reason for
the appearance of %% in (2.16) since the representation of
the angular momentum operators forj= 1 is just — 7**. This
coupling of the appropriate representation matrices for

F 9, with the projections of the tensorial connection is to
be expected since, from a modern pont of view,** the connec-
tion form takes its values in the Lie algebra of the group
generated by the allowed tetrad equivalences—the Lorentz
group. It is convenient, as well, to note the usual commuta-
tor identity over ¥ (0,2),

DDT ,=—F% ,,02,T5.
3. PERTURBATIONS OF WAVE EQUATIONS

In this section both the field equations and their pertur-
bations for gravitation and electromagnetism—the Bianchi
and Maxwell equations, respectively—are discussed. We in-
clude the electromagnetic case mostly because it shares
many important properties with the gravitational case, while
being considerably simpler. It is convenient to study radi-
ation generated by these perturbations in terms of appropri-
ate covariant second-order wave equations, generated from
the first-order field equations. Therefore these equations are
derived as well, and it is shown that appropriate components
of these equations may be decoupled provided we have cer-
tain conditions on the background gravitational field. If we
require that both equations of extremal helicity decouple,
these conditions amount to the requirement that the back-
ground conformal field be of type D (or conformally flat).

(2.35)

(2.36)

In terms of the usual electromagnetic field tensor, F.p
Maxwell’s equations are just

dF=0, *d*F=4ril, 3.1
which become, in ¥ (0,1).

e* 7" ,DPF, = Z"DF, = 2ml. 3.2)
Contracting (3.2) with Z* and using (2.9) gives

DF, 429, Z<DF*=_—8c % ,.J, (3.3)
from which we obtain, using (2.18),

(*D*D —R/3)F,+ C,’F,=87% , 1DJ. 3.4

This is the fundamental covariant D (0,1) massless wave
equation.

In a similar way, by inserting the full decomposition of

2,
‘Qa:Cabgb_{"(R/é)ga'{"ﬂabgb
=CpZ’+ Z ,sM°e" N e, (3.5)
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where
MaB =R ap _(R/6) 8 ap» (36)

into the Bianchi equations (2.22), the appropriate decompo-
sition is obtained,

B,=2"DC,, —e“Z,"D M, =0, G.7)

D M ;" =O0. (3.8)

This result corresponds to (3.2) for the electromagnetic field.
(The one-form B, is simply a covenient name for the equa-
tions for later use.) Contracting (3.7) with Z¢ gives, as
before,

DC, + 29,47 %DC, = —4e°Z .57 bYBDﬂMy‘S,

3.9
from which we obtain, using (2.18) and (3.5),
(i*D*D—4R) C 1 +3C ,,C?%, —8 ,CC 4
=—43paa5u“2”b7’BD“DﬁMy‘s. (3.10)

Projecting this equation into one over ¥ (0,2), via Z,%, re-
quires the introduction of the invariant tensor 4 4pc, which is

considered next.

There are two quantities, invariant under Lorentz
transformations, that can be formed from a V (0,2)-type
quantity, one quadratic and one cubic in the conformal ten-
sor and created using g and 7*#"°, Since these are proper-
ties of the D (0,2) representation, they are generated by two
tensors g% and A%<, both totally symmetric, and invariant
under Lorentz transformations represented in ¥ (0,2):

Q, i a, 13
gABCACBzé(C By&caﬁws‘*‘ 77] /375Caﬁegcy6 §)y
(3.11a)

h ABCCA CBCC =%(Caﬂ}’5csgyacaﬁ€§

i a €
+ ? 7 Byécaﬁegc vono C &nf ),

(3.11b)
hAC = “13‘ (806855 — 4 8¢, 45C , — 67, 8565 _ )]
+ 460, 676%, + 87 _8%8%)
= Z4ZEZ S, (.110)

These invariant tensors are analogous to the two tensors, g 5.
and 7,5, in the original tensor space, and are invariant
under proper Lorentz transformations, but they have differ-
ent parity. They can also be thought of as generated by the
projection operator, Z ,°,, considered as a 3 X 3 matrix,
gAB :tr(ZAZB),

RABC <te(ZAZBZC).  (3.12)
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The projection of (3.10) may then be written in the final form
(i*D*D—LR) C ,+3h 1, CBC =—4M ,, (3.13)

where M , is simply an abbreviation for the source terms,

Z,“"7°D,DsM,. The differential operator on the left can
also be written in the form

*D*DC,=D“D_C,
= |:]CA - 27//‘8/4 aCB,a - (WBA a;a

— W HBCy, (3.14)

where [l is the usual covariant d’Alembertian as it actson a
scalar.

These wave equations for the gravitational and electro-
magnetic cases are special cases of a more general formula-
tion which can be given for arbitrary massless fields of spin s,
corresponding to a D (0,s) representation of the Lorentz
group, which is given in the next section. However, the main
purpose of these equations is to determine linear perturba-
tions of the relevant field. In the gravitational case we con-
sider arbitrary first order perturbations of the background
geometry. The most interesting perturbations induce nonze-
ro values of C., and/or C_, which are referred to as the radia-
tive components of the conformal tensor. Situations involv-
ing the simultaneous perturbations of multiple fields with
different spins are not considered. Hence, for spins other
than 2, only test fields, in an unperturbed background geom-
etry, are considered.

The technique used for the gravitational case is to con-
sider a new metric—a new Riemannian manifold—which is
only slightly different from the background metric. This new
metric is thought of as generated by a null tetrad, as before,
which is now perturbed slightly from the background values;
however we maintain invariant the form of the tetradial
components of the metric, g5, as given by (2.2). That is, the
new tetrad is chosen such that, with respect to the new met-
ric, it maintains the convenient null form in (2.2). We then
generate perturbed connections, inverse tetrads, fields, cur-
vature, etc. The perturbations in all variables are assumed to
be “first-order small” with respect to their background val-
ues, or, specifically, terms of order greater than one in the
perturbations are ignored, as is commonly done.

In a manner analogous to the discussion at the begin-
ning of Sec. 2, the new manifold may be described by a null
tetrad (basis of 1-forms)

e "=e "1 85e”, g=g e ®e”, (3.15)

where the superscript (0) is, temporarily, used to denote
background variables while the perturbation of the tetrad is
denoted with a 8. As soon as feasible, the use of this super-
script will be dropped, when no confusion should arise. The
matrix g, is numerically the same as the one in the back-
ground space, while, of course, g is the new metric,

g=8°+28 5 V" ® Se”. (3.16)
The inverse tetrad (basis of 1-vectors), which we denote by
d,, is similarly perturbed, so that

(034
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3,=99_+64,. 3.17)
Since
e (d5)=6%5=e@" (),
a relation between the perturbations is obtained,
eP*(635)=—6e%(3p). (3.18)

If we conceive of the two tensor algebras as being the
same from the point of view of a nonmetric structure, but
merely having different metric structures, as is common and
convenient, then we may use ¢/ as a basis for 1-forms over
the new manifold and write

5e*=Cpe @, 53 ,=B" 3", (3.19a)

C%=—B%, (3.19b)

where the last line of the equation is simply the restatement
of (3.18). In general C,; has no symmetry properties, so that
there are 16 independent quantities which may be thought of
as generating the perturbation. However, (3.16) tells us

g_gm»:zc(aﬁ)e (O ® e(o)ﬂ (3.20)

so that the symmetric part of C,z corresponds to the quanti-
tyh ,, =& ,..,—& " in the usual coordinate-basis versions
of gravitational perturbation theory. It is therefore useful to

split C,z into two distinct parts,

Hos =2Clpy Ly =2C a5 (3.21)

The L, are affected by the particular choice of infinitesimal
gauge. This may be seen by considering a gauge transforma-
tion near the identity. Setting N7, =6°,+6 N7 ,,(2.6)
requires

SN (omy =0. (3.22a)

Performing such a transformation on the structure defined
by (3.15) and (3.19) gives

8¢ =(C%,+8N°,)e®=. (3.22b)

This indicates a choice of 6 N 7, can be made which either
cancels L 7, altoghether, or some particular portion.
Chrzanowski* and Demianski*' have both made the same
choice of § N 7, for fairly clear physical reasons. However,
in the later discussion we will consider some reasons for oth-
er choices as well. In all cases, however, the six degrees of
freedom of C,; corresponding to L, can be completely de-
termined solely by choice of the infinitesimal gauge transfor-
mation, reducing any question of the determination of C,,; to
just determining H 5.

The restrictions on N 7, imposed by (3.22a) allow six
(real) degrees of freedom to the Lorentz transformations.
Since specific forms of various allowed gauges will be of con-
siderable use in the later discussions, it is convenient, at this
point, to present the details of the allowable gauge transfor-
mations from the point of view of null tetrads. The degrees of
freedom may be specified by three complex parameters o, p,
77, which generate three independent sets of gauge
transformations’:
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o-gauge: el = (eZHmo')e], el = (e — 2|'Ima)e2,

e’ = (R, e = ("¢, (3.23a)
or N = [exp2i(c %o —0Z )],
p-gauge: e’ =e' +pe’, e’ =eé +pe’,

e’ =¢, e'*=¢e'—pe — pe’ —ppe’ (3.23b)
or N =exp[ — \/21'(032" . —pZ )],
n-gauge: e'' =e' — ye*, e’ =e’ — ne’,

e = e + e + et —yyet, et =¢, (3.23¢)

or N=expl + V2inZ — 72 )).

Note that, in the infinitesimal case, the associated quantities
SN,=Z,%8N ,; may easily be read off from the expo-
nential forms of the corresponding matrices,

SN, =iV2(—67,V280,6p). (3.23d)

It is also useful here to list the behavior of the connections
and conformal tensor under these transformations. These
are most efficiently specified by noting that

C =N ?Cp, (3.242)

where N ,.Z is a D (0,2) representation of the original trans-
formation, while

I'.e"=r =N, r,+x,=(N N.°C,,+X,)e’,
(3.24b)

with N ,“ corresponding to the D (0, 1) representation. These
matrices are given by:

e 0 0 0_
o-gauge: N,°=| 0 1 0} x,=| Vo)
0 0

0 e —20

(3.25a)
N'I‘A :dlag{ e4a’e 20,1,@ 72a,e —4a }’

1 0 0
p-gauge: N % = \/2p, 1

8 \/Ep, 1
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1 0 0 0 0
2, 1 0 0 0
vA= Vep. Vep 1 o o |
2, ¥, Veép 1 0
o, 2w, Vep, 2, 1
1, \/577, 7? dn
n=gauge: N "=l o 1, Vou }p X. =] 0}
0o 0 1
(3.25¢)
1, 29, \/gnz, 27, 7t
o 1, Ven 3p 2
Net=k o o 1,  Ven Vep
o 0 0 1, Py
o 0 0 0 1

The H ; are also subject to gauge transformations, but
of a considerably different sort. These correspond to the usu-
al infinitesimal coordinate transformations made in the stan-
dard theory of linearized gravitational waves. That is, the
coordinates x/* are replaced by a new set x'* =x# +£#,
where £ is a first-order small quantity. This allows up to
eight constraints to be placed on the nature of H ;. For the
time being, we will not specify any particular choice of this
coordinate gauge.

The perturbations of the connections and curvature
may now be determined, as functions of C,;. As usual, the
connections may be calculated via 1-forms through the use
of the first structure equations, (2.3), or via the basis of 1-
vectors through the use of commutation coefficients given by

[00:851=Cus’d .
(3.26)

waﬁ:%(caﬁr+Cﬂrl3+crﬂa)ey’

The 6w, ; may be calculated directly, using the commutation
coefficients. In order to proceed from the first structure
equations, it is simplest to note that the exterior derivative is
a nonmetric structure and therefore is unchanged from its
background version. Some understanding of this observa-
tion can be motivated by looking at the exterior derivative
acting on a scalar,

d¢ = (3,9 )e"
— (8(0)a¢ )e(O)a + (B /j'u

+ Cﬂﬂ)(a(mﬁ(b )e(())rx
— d(O)é,

where the last equality is obtained by use of (3.19b). Either
approach leads to
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6a)aﬁ =H1,[a;B]e (O)Y—%D(O)Laﬂ, (3.278)
as well as
D6 e =e PP NS0, (3.27b)

where the covariant derivatives are naturally with respect to
the background metric. It is to be noted that the perturbed
components are expressed by

5(0(1/3 =(5a)a/),ye(0)7/ +w<o>aﬁy597/_ (3.28)
Continuing, one easily finds that
60(1/3:1)(0)5 wa/j’
:H(S (B 17€ O Ae (0)6 +20(0)[ayL By
(3.29)
and, since
502 ,,=5%06R almem)r Ae @
+2R 556 VT NS ), (3.30)
it follows that
SR opys =H iy ia —Ha1rs18 TR yociaH )
+2R 4py Lsje +2R (510" L g e 3.31)

The set of Egs. (3.28) and (3.31) completely determines
the connections and curvature in terms of the perturbations
C,p of the tetrad, and are thus equivalent, for example, to
those given in Ref. 30. Since they are covariant in form and
have had no prior gauge conditions built into them, they can
be easily adapted to whatever problem is desired. However,
when determining the complete perturbed geometry
through the use of these equations, one must take many (ar-
bitrary) gauge conditions into account. A more direct deter-
mination of the physical degrees of freedom of the perturba-
tion is therefore desirable. This is accomplished, following
Teukolsky,* by directly calculating the perturbations of the
Riemann tensor and then inverting the equations above to
evaluate the perturbed tetrad, if desired.** We proceed to the
alternate approach by writing the first-order perturbation of
(3.13), accounting for (3.14), and suppressing, usually, the
superscript (0) for background quantities,

D“D,5C, + [D“6D, + (6D “)D,]C,

—i8(RC,) + 6h 5 CP8C“ = — 45M . (3.32)
Every term contains a perturbed quantity and, therefore, all
other entries in that term must be from the background met-
ric. Note that, for example,

(6D )C =3 )C *+@E 7™ ,,)CE, (3.33)
and the simplified notation
Cc",, Iinstead of (69, C" (3.34)

will occur quite often.

318 J. Math. Phys., Vol. 20, No. 2, February 1979

In general, (3.32) constitutes a set of five coupled, sec-
ond-order, nonlinear partial differential equations for the
desired 6C . There are certain sufficient conditions which
allow decoupling of the most interesting of the equations—
the ones with extremal values of the helicity, 4 = + + or

— — . Itis believed that these conditions are in fact neces-
sary as well,’ but we do not have a complete proof. To deter-
mine sufficient conditions suppose first that the background
metric is algebraically special—that there is a multiple Deb-
ever—Penrose null vector. It is desirable to give labels to two
particular allowed modes of alignment of the tetrad with one
or more multiple Debever—Penrose vectors. By choosing our
tetrad so that ¢’ is aligned with this vector, the Sachs—Gold-
berg theorem guarantees that
Ir,=0=r,, C.=0=C,—positivealignment of tetrad.

(3.35)

On the other hand, if we align ¢* with a multiple Debever—
Penrose vector, we obtain

F—l =0= F—J,
tetrad.

C._ = 0 = C—negative alignment of
(3.36)

We will show that the former alignment guarantees the de-
coupling of the §C.,, equation, while the latter insures that
the 8C.. equation decouples. From now on we continue to
assume that the space—time under consideration is algebra-
ically special, thereby assuring that (at least) one of the wave
equations can be decoupled. Both will decouple only if there
are two distinct multiple Debever—Penrose vectors, which
requires a background metric whose conformal tensor is ei-
ther of type D or conformally flat.

Next write out Eq. (3.32) for the case A = + +, utilizing
(2.34) to determine the ¥ (0,2) connections in terms of the
quantities I, defined in (2.20), and assuming a positive
alignment of the tetrad [(3.35)],

(O—1R)SC..+4V2r,*6C , , ,~T.%8C, )

+2V 2 M, —2rer _+4rer,, (3.37)

V6 CI8Cu—2 I, +3 VI, ,)8C.

+aV6CI, “8T = —45M...

The procedure to decouple this equation—eliminate terms
involving 8C. or 8I",—is quite straightforward. We refer
back to the Bianchi equations as given by Eqgs. (3.7) and
perturb the appropriate ones. The combination w.-6B.=0,
evaluated for the positive alignment conditions, gives

—4r=sC, =16, ,6C ,, y+8(I.°T _,

+4V2r, (T4, )5C.+4 V2T, 8C.,
4V 6 CF, “8T , ,+16I.°8(D M 5,,). (3.38)

Inserting this into (3.37) eliminates several undesirable
terms, leaving®
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@ — 4R)SC.. + 4V 2L26C, | ,+4, (5C ., . 3)
+2Vare +2rer_  +16V2r, [l
4rer,, —sVsc)sC..

— —4[8M.. + A1."8(D M) (3.39)

The remaining term in 5C, has not been written since the
coeﬂicient,_after inserting (3.38), simply becomes

T +";a+\/ 2 I,°I" _,, which is equal to C, in the back-
ground and vanishes. Therefore, at least in the absence of the

source terms generated by M,z and 6M ,;, the equation is
now decoupled, containing only 8C.,, and known quantities.

By writing out (3.32) for the case 4 = — —, assuming
the negative alignment conditions specified by (3.36) and
inserting, from (3.7), the conditions specified by w_-8B., the
very similar, decoupled, equation for C.. is obtained,

@ — 1R)SC..— 4(V2r6C ,— 4T _,5C )

+2A~=Vorg, +2rer _,—16Var_ Iy,
L ALET,, — YV 6C)SC.

= —4[8M__+ 4I'*8(D;M, ). (3.40)

An exactly analogous procedure will also decouple the
electromagnetic wave equations, (3.4). In this instance the
geometry is held fixed, but satisfying the conditions (3.35) or
(3.36), while 6F, is conceived of as a test field which does not
modify the geometry. (That is, the resultant equations are
the usual electromagnetic wave equations in a curved space.)
Writing out (3.4) for a= + with 6F, for F, gives the appro-
priate result. The use of the constraint given by (3.35) allows
the coefficient of 6 F, to be made equal to C,, which vanishes,
while the use of @.-8/, calculated from the perturbed Max-
well equations [(3.2) with 8F, written for F,] allows the
elimination of terms in 1,°8 F, ,, leaving the decoupled
equation for 6F,,

@ = 'RISF. + AV 2L F, , + 4T, \OF. )
+(V2re, 4 2her_  + 20er,,
+ 8V, Iy, — C/V 6)F,

— — 8V 2in(8J 5.4, + I78J). (3.41)

Again, using (3.4) with a= —, the equation for C., the con-
straint (3.36) and w_-6J calculated from (3.2) gives the de-
coupled equation for 6F.,

@O—'RYSF. —2V2IF 4 ,6F )

+(=V2re, arer,, + 2rer_,
—8V2r_ Loy — CrV 6)SF.

= — 8V 2in(8],, 5, — I'761,). (3.42)
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It is often useful to consider gauge transformations as
an aid to simplifying these perturbed equations. Such trans-
formations can be considered on both the original manifold
and the perturbed manifold. It is easily seen that any p-gauge
or 77-gauge transformation in the background space will in-
terfere with the important conditions for alignment of the
tetrad, (3.35) or (3.36). Therefore, only o-gauge transforma-
tions are allowed, on the background manifold. In Sec. 5 it is
shown that such (finite) o-gauge transformations are in fact
necessary to reduce the equations to separable form.

The infinitesimal gauge transformations generated by
the NV, [see (3.23)] affect only the perturbed quantities and
therefore are of considerable use, especially when the back-
ground geometry is of type D. In that case, an infinitesimal
p-gauge leaves invariant all the 5C, with the exception of
6C., while an infinitesimal 7-gauge perturbs only 8C..*
Therefore, under a combined 8p, 67-gauge, the effect on the
components of the conformal tensor is

5C'..=8C.., 8C'y=8C, SC',=8C.+V6Co,

8C'..=6C., 8C'.=5C. +V6Cdp. (3.43)

Since 81 and 8p are arbitrary first-order quantities at our
disposal and C; is different from zero, these gauge transfor-
mations may be used to cause C’. and 5C’_ to vanish, which
determines certain of the L ;. The ability to choose §C'. and
&C’_ as zero can be used to simplify both the C’, wave equa-
tion and the route backward toward determination of the
perturbations to the connections and tetrad. The behavior of
the 6C , under (finite) g-gauge transformations is also need-
ed in Sec. 5. Therefore, consider the gauge-transformation
determined by 0'® + do. It is easily seen that

5C ,=exp(240)8C ,+24C , 50, (3.44)

where there is no sum on 4 in the equation. In a background
geometry of type D, the second term vanishes in every case.
As aresult of this, the simple transformation equation

8C', =exp(Ao°N6C,, A= + +,+,0,—, — —

(background canonical type D), (3.45)

is acquired.

4. SPINORIAL APPROACH [FOR ARBITRARY
D(0,s) MASSLESS FIELDS]

The main empbhasis of this work is the gravitational
(and electromagnetic) wave equations. However, for reasons
of completeness and esthetic interest, we would like to in-
clude neutrinos as well; there is also some interest in particles
of spin 3/2 generated by work on supergravity.*’ If the reader
has more interest in the gravitational case he can skip this
section and proceed to the question of separability discussed
in Sec. 5.

We utilize the usual spinor spaces®® which correspond
to the representation spaces ¥ (0,1), whose elements are de-
noted £, and ¥ (4,0), whose elements are denoted &N, where
these capital Latin indices take on the values 1 and 2. [Be
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cautious so as not to confuse these indices and the ones de-
noting components of an element of ¥ (0,2), used in other
sections of this work.] As is well known, the metric induced
on these spaces can be represented by the two-dimensional
Levi-Civita symbol

mv_ [ O 1
¢ ‘(—1 0)

and its complex conjugate € MN TIndices are raised and low-
ered by the rules

Su=€mng®™, &V :fMNBGM~

ThehomomorphismbetweenD (0,4) ® D (3,0)and theusual
tensorial representation of O(3,1) is expressed via the Pauli
matrices

AYO) (A

“.1)

(4.2)

. (4.3)

The useful relation between the Pauli matrices and the im-
portant projection operators #? is

i
4V2
where the Q ¢,y are just the vector addition coefficients,
C(.3.,M,Na),

7=

Q una ™" AoV, (4.4)

1
5° 58
VS
QaMN: (4-5)
L sa  se
V2

As usual the covariant derivative into these spaces is deter-
mined by insisting that D ¢ ¥* =0. This generates the spin-
orial connections

r. -
V2
FMNZ )
Lr, r
V2

as well as the complex conjugate quantities I ,; 5.

(4.6)

The conformal tensor is just determined by a fourth-
order spinorial quantity, corresponding to D (0,4)* D D (0,2),
Chrnprr given by

— — 1
Cllll - %Ci'*'? CIZZZ - ZC—,

1
anz = — = Co-

sz = - %Cn
V6

szzz = - %C» -

.7

If ¥y, ..ar, 1s an element of ¥ (0,s), then the usual mass-
less field equations* for any spins =0, 3, 1, %, 2,.-- ,may be

written most easily using 7 N = ¢MN.D such that

VPNWPM,WMI\ L= 09 (48)

where the zero on the right hand side indicates an explicit
omission of possible source terms. In the case of s=1 (Max-
well’s equations) or s =2 (the gravitational field equations),
appropriate sources have already been included in Sec. 3.
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Since, for other spins, chotces of source are not too easily
made, sources are excluded from consideration in this sec-
tion, as well as most of the next section. As is well known*’
this equation is subject to the constraint

(S—%)(S— ] CMNP(L, L .. MNP =0,

(4.9)

which couples the massless field in question with the gravita-
tional field of the background space for spins other than
s=0,1, or 1. [It is possible that the field equations (4.8)
should be modified in order to avoid this coupling but no
satisfactory method is yet known.]

In a manner completely analogous to that carried out in
Sec. 2, (4.8) can be used to generate the wave equation

+22s—1DCY o Y rresrowp =0.

Before proceeding to the separation of these equations,
two special cases should be noted. If one takes s =0, (4.10)
becomes simply

(DD, — 'RW=0 — 5 =0.

(4.10)

(4.11)

This has the additional term, -- R /6, which is unconven-
tional for a scalar (s = 0) wave equation. Our approach has
resulted in the additional factor because the technique guar-
anteed, ab initio, the conformal invariance of the equations.*'
It will be shown, in the following section, that this additional
term is essential for the equation to be separable in PD
coordinates.

The neutrino wave equation (s = ) is also very simple,
(DD, — §R)¥) =0, (4.12)

even though all higher spins involve a coupling with the spin-
orial conformal tensor. Equations (4.12) are not yet decou-
pled due to the fact that the (covariant) operator D, mixes

components.

The separation of the wave equations (4.10) is initiated
by viewing them as the expression appropriate for a perturb-
ing (test) field in a background geometry. This requires only
the replacement of ¥ ,, ,, by & ¥,  exceptin the
case of s=2. For the gravitational case, where the W\ npr ATE
the Cy,vp;> a perturbation of the ¥\, generates an addi-
tional perturbation of the C,,y, in the coupling term. The
perturbed equation may be written as

s+1

(DaDa _ —6—R )6 WM,mM;.

+24,C™ . 0¥ prmt one =0,

(4.13)
2(2s—1)=6, s=2(gravity),
A, =10, 5=0,1,
(2s—1), otherwise.

Denoting 6%,,.., by §¥, and 6¥,, , by d¥ _, or the pair by
SY¥,, h = +5,(4.13) may be written out for the case of maxi-
mal helicity,
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(D— 5*6' IR )5 W 45T, d°69M,

g 8™, 4

+25( g% +I"

+25Q2s— 1) TM TN W 4

+24,CMY 8 pmin =0. (4.14)

and a very similar expression for 8% _ . Following the tech-
nique applied in Sec. 3, the field equations themselves, (4.8),
are used to eliminate from (4.14) theterm I" |, ,d“8 ¥ 5y;..;-
This can only be accomplished when the condition (3.35) is
met since only 3,6 ¥ ,,,..., and 3,6 ¥ ,,,..., are determined by
the field equations in usable form. Next, the coefficients of
5W¥,,,.., and 8 ¥,,, ., are determined to be exactly C, and
C.. both of which vanish, by condition (3.35) again. This
leaves the equation decoupled. In an exactly analogous fash-
ion, with the use of condition (3.36), the equation for §¥ _, is
decoupled. The two may then be written as one equation,

(D— %M V2h@red, +,",)

+25 [ =22 _,Pr (3 ,+V2hT )

ATST 45Ty ]— ——4.C, )5 ¥, =0,

6
(4.15)

where k = h/s=+1, h=+s. Equations (3.39), (3.40),
(3.41), and (3.42) may be seen to be special cases of this
equation for the appropriate values of s and 4.

5. SEPARATION OF THE EQUATIONS

In the previous section it was shown that, if the back-
ground metric is of Petrov type D, both the extremal-helicity
wave equations decouple from other unknown quantities for
arbitrary massless fields of type D (0,s) as well as for gravita-
tional perturbations. However, Weir!” has shown that all
vacuum type D solutions are realized in the solutions of the
Einstein-Maxwell equations found by Plebanski and
Demianski,'® hereafter referred to as PD solutions. Further,
Debever!® has shown that, in addition to the obvious two
Killing vectors which these solutions possess, all the PD so-
lutions, including the nonvacuum ones, admit a second-rank
conformal Killing tensor. Motivated by these facts, we now
write these wave equations in PD coordinates and show that
their solution can be reduced to the solution of a pair of
(uncoupled) ordinary differential equations, only. This
therefore generalizes Teukolsky’s* results with the Kerr met-
ric to an arbitrary PD metric which includes all those of
vacuum D, as well as the possibility of a cosmological con-
stant or an electric or magnetic charge. (In the case of an
electric or magnetic charge, in principle the gravitational
perturbations induce electromagnetic perturbations and
vice versa. This coupled perturbation problem is one which
we have not yet been able to solve. Here we are restricting
our attention to dealing with perturbations of a single spin,
only.)
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The PD solutions depend on seven arbitrary param-
eters. In addition to the cosmological constant, the param-
eters group into three complex ones, m+in, a+ib, e+ig,
which correspond to mass, NUT parameter, angular mo-
mentum per unit mass, acceleration parameter, electric
charge, and magnetic charge. The more usual type D solu-
tions, such as the Kerr metric, are recovered by performing
specific limiting transitions which will be described later.
The metric is described in coordinates (p,g,0,7) by*

i (P .
ds _¢2( St Urtgdoy
n "Z;q g ———(dr— pZda)Z) 6.1

with the “conformal factor”

¢ =(1—pg). (5.2
The functions & and £ are fourth order polynomials in p
and g, respectively,

P =—(A/6+e +y)p +2mp’ —e€p’

+2np—(A/6+8~7) , (5.32)
D =+(—-4/6+8~y)q'—2ng’ + ¢
—2mg+(—A/6+e*+7) , (5.3b)

where € and y are related to ¢ and b by
1 (a?——b2 ) ( A )‘/2
€=— — 1 — “—(a@*+b* ,
ab \a*+b* 3 @5y

y=(@+b?)"'—A/6. (5.4)

In order to proceed further a choice of (null) tetrad is
required. More than one such choice will be of considerable
interest to us because the maximal and minimal helicity
equations do not separate in the same gauge. We therefore
present three choices of tetrad which are needed. Define a
tetrad e*“ such that — e*“ is the tetrad given in Ref. 16 by
Plebanski and Demiafiski. The tetrad used most often in our
work, denoted by e, is obtained from e*“ by a o-gauge trans-
formation with o chosen as A defined by

e = (g+ip)2/ D) (5.5)
Explicitly, the tetrad e* is then
do) ) :?,

el:\} - (\/]

2 2
=4 (—p 5 dq+dr—p‘d0), (5.6)
1]
1é! (d 2 (d d
et=14" {dg— T—p* 0’)),
: e 7
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while the inverse tetrad (basis of the tangent space) is

d=r = —2—(8,- =@, +pd))=70,

¢.,2/2 (8
.=
P+

l 2
?(aa—qar)), 5.7)

1
aa=¢(aq+ ?ag—qzaf)),

where by d,, etc., we mean d/dp, etc., as usual. This particu-
lar choice of gauge is motivated by the fact that, when the
appropriate limit is taken, it becomes (modulo sign conven-
tions) the tetrad used by Teukolsky and most others who
considered similar problems. It is the factor ¢ + ip in the
definition of e*” given in (5.5) that is important for this sepa-

ration. The factor Vv 2/2 isrequired only if the tetrad is to
agree with that of Teukolsky. The connections can then be
calculated to yield

r+:wz4=( ¢' '—¢q)el
q+ip
+((¢?)|/2_1_.(¢p_ i¢' )e’,
2 qg—ip q+ip
r_:(l)”: Q/Z7 ( ¢- _¢q)ez
pi+q’ \q+ip
E 172
+( ) ( ) (5.8)
q+w q+w
o () Lo 2 o5
2=\ qrip 2 7

; G
b1, i)ez]
g—ip 2 &

_(q _ip )Al (¢p -
—ipd Q(p2+q2)‘2e3,

w34=f(~?—)¢ [(g+ip)ye' —(g—ip)*e’]

e B 2 2q9¢
$3200 497 (8,6 = W)e3'¢""4’

where ¢p and ¢, mean d¢/dp and d¢/dq, respectively, while
the dot is used to designate differentiation of the function
with respect to its argument (e.g., P =dP /dp). As well, we
have

Vo= -2 (/—

p2+q2

129
(g+ip)’

6 _
q+ip

Lo (5.9)

6.2 N 122 )
g+ip  (g+ip)/
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and

R= p’z‘fq [O/‘J 6J’¢; +12<//>(¢; )2

+92-6 Q%"- +1292(Z_">2].

The equations for maximal helicity (4 = + + for C,, for
example) will be found to separate in this tetrad while the
equations for minimal helicity are, instead, separable in the
tetrad e”“ obtained from e*® by the inverse of the previous o-
gauge transformation, i.e., with o chosenas A" = — A,

TN = (g +ip)2/ D), (5.11)

Using (3.45) for the transformation properties of 8C , it is
easily shown that the gravitational wave equations are form
invariant under o-gauge transformations so that the equa-
tions need not be recalculated for the new tetrad choice.

(5.10)

Working in the tetrad ¢, the wave equations from Sec.
3 for both the gravitational and the electromagnetic cases
could be written out in PD coordinates. However, we prefer
here to use the equations from Sec. 4 which are valid for
arbitrary massless, D (0,s) fields, including gravitation sim-
ply as the case when s=2. This allows for maximal general-
ity of the results. It will also permit the demonstration that,
in fact, the desired wave equations only separate for certain
values of s. Additionally the wave equations from Sec. 4 are
sourceless, which is desirable in this section since the discus-
sion involves separability. Separability of a given partial dif-
ferential equation is a property of the differential operator
and the coordinate system used, rather than of any (inhomo-
geneous) source term. When the source term is also separa-
ble one may proceed as before. But, in the common case of a
nonseparable source term, a (separated) Green’s function
may be constructed from the sourceless equation, and then
applied to the given source term.

Because the maximal and minimal helicity equations
separate in different tetrads, they are treated separately. We
begin with the case of helicity 4= +s and rewrite (4.15) for
that case denoting the desired perturbation by
¥, ,(6C ., fors=2,6F fors=1,etc):

“d, + 8 | 1104

+Varge, +rer _, + 254V e,

1 .
+ I To)] — ——_:ASCO)6W+ .=0, (5.12)
vV

6

where the constant 4_is defined in (4.13). This equation may
now be rewritten in PD coordinates with the tetrad ¢, which
results in the rather lengthy equation,
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. ‘f:pz (8,20, + 3,29, +523,— 2s + 16 (9,7

X3, +8,29) + B+ (s + 1+ A)P /6 — sPV/4P

+@s+14A4)2/6—(s+ 1[4, + (s + 1)$,2
(5.13)

—(s+2)¢( ¢ ,° 7 +¢ ,;*2) 1+ [sQ2s—1)—4 ]
X (g+ip)'[i 7 + 2 +2g+ip)"

X(Z—-2)}6¥ , =0,

where B is used to denote those terms which have derivatives
with respect to o and 7,

B Eg-](aa +pzar)2 - Q_l(ao - qzar)z
+(2/2)@, - ¢8,) + is(P/P)

X (3, + pd,) + 4s(g — ip)d.. (.14)
None of the coefficients in (5.13) involve o or 7 since d,, and
d, are Killing vectors for the background geometry. There-
fore, we may look for solutions having the form of Fourier
coefficients in these variables—a reasonable thing to do since
the existence of these Killing vectors characterizes the back-
ground as axially symmetric and stationary. When acting on
such Fourier coefficients, the term B will simply become a
separable term, with no differential operators, to be added to
the equation. However, since the “conformal factor”

¢ =1-pgq is inherently nonseparable, as well as the terms
with the factors of (g +ip)”', more work must be done.

The known conformal invariance of the equation sug-
gests a ‘“‘conformal transformation” of some power of ¢.
Therefore, we denote the operator in (5.13) by L and evalu-
ate the new operator ¢ ~ ‘Lé *'. By looking at the first-order
derivatives in this new operator, it is found that a necessary
condition for separability ( in these coordinates) is that
! =5 + 1, which eliminates the (nonseparable) terms

~2(s + D¢ (6,73, + $,23,). This new operator is then
notably simpler,

e : ¢’
¢ —CHDL 4 +n=q2_+pz_{ap@ap+aq.gaq

+593 4B +(s+144,) P /6—(s PY/4 P

+(@4s +14+A,) 2/6+[s2s—1)—A, |(g+ip)"

X [ 7+ 2 +2q+ipy' (7 —2) ). (5.15)
The (g +ip)™* terms are still not separable. However, their
coefficient—s(2s — 1) — 4 —vanishes for s=0, 4, 1, and 2.
We conclude that, at least in PD coordinates, the equation
separates only for these values of the spin. It is worth noting
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that these are just exactly the values of the spin for which the
usual massless field equations (4.8) (which we used) are valid
without any constraint on the background curvature. That
is, (4.9) imposes a coupling between the background geome-
try and the massless field in question which is usually ig-
nored, but which is in fact satisfied for arbitrary type D back-
ground geometry only for spins =0, , 1, and the
gravitational field itself, with s = 2. It is therefore a very
reasonable presumption that the fact that the constraint
(4.9) is not generally satisfied is indeed the source of the
nonseparability of the wave equations for the other spins.

From now on, we consider only the spinss=0, 1, 1, and
2, and notice that, for all these spins, 4, can be written in the
analytic form s(2s — 1). Therefore, (5.13) may be rewritten in
the simplified form

(¢ 7L )N 6¥ )

2
- p;iqz (0,23,+2°9,2°*'d,+B

+[@+1) P +(+1)(25+1) 21/6
(5.16)
~(GPY/AP (b 18W, )=0.
Separated solutions may now be obtained*® by writing
) W+s =¢s+1R+(q)S»(p) eiaaeiwr. (517)

This form separates (5.16) into the following two ordinary
differential equations,

(8,23, +(2s+1) #/6+4swp— P~

X (@+wp*+3s P)+4 15 (p)=0, (5.18a)
[279,2°%'3 ,+ 6+ D25+ 1) 2/6+diswg
+ 2 a—wg)a—og+is 2)—4 1R () =0,
(5.18b)

where A is a separation constant. Note that this implies that
R*and §" are, in principle, functions, parametrically, of s, a
o, and 4, as well as their arguments. The general solution
would then be of the form

60, =4 | dae“r(@

X fdwe“”g(w)R “(g;5,a,0)S *(p;s,a,0). (5.19)

The solutions of (5.18) depend upon a large number of
parameters—s,a,w,A,m,n,€,y,e,g,A—as well as the bound-
ary conditions. Consequently, we do not say very much
about them here. In the limit to the Kerr geometry, it is the
function $*(p) which becomes the spin-weighted spherical
harmonics, while in that limit, the equation for R (g) must be
solved numerically,* although some studies of its analytic
properties have been made.” We do note that 2 must be
positive in order for the signature of the metric to be correct.
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However £ goes to — oo for sufficiently large| p |, so that the
allowed (physical) values of p are restricted to some finite
region, in which & >0. Therefore, (5.18a) does constitute a
well-defined Sturm-Liouville eigenvalue problem for 4, and
S(p).

The equation for A = — s—for 8% _ —could also be
written out explicitly from (4.15), but recall that it does not
separate in the tetrad in which we have been working. The
tetrad e”® defined by (5.11) has been chosen, however, so
that not only is the equation for 8% _ _ separable but it is
identical to the one for §¢ , _ except for a changeé of sign of o
and 7. Therefore, defining

RA(gs,a,0) = R*(g;s, — a, — o),

S (ps.a,.0) =S p;s, — a, — ), (5.20)
we have

SV ="+ 'R (g)S (p)e'*e". (5.21)
But, using (3.45), 8%  =e~*45¥  _ sothat

BY _ =e  ¥1¢ R (g)S (p)e“oe’

2\ o
=(@+ip) Pt ’(—2—) R (g)S (p)e“e™”.
(5.22)

Another choice of tetrad in which the equation for §¥
separates 1s the one defined by the o-gauge transformation
from ¢ in which o is chosen to be A such that

e =(g+ip). (5.23)

This transformation is similar to the previous one, but ex-
cludes the factor (2/2), included earlier for reasons for sym-
metry. [As was already pointed out, it is the correct power of
(g —ip) which is important for separability.] In this case the
equation determining 5% _ is the same as the earlier one for
8% ,  except for the change of sign of 5. Therefore, setting

ﬁ’(q;.s,a‘(u) =R'(g; —s.a,w),

S(pis,a,0) =S8"(p; —s,00,0), (5.24)

and transforming back to our primary tetrad, we have*
S X :(q+lp) 2\¢ s+ IRV-(q) §(p) e [mfe ior (525)
These various choices of tetrad can all be shown to cor-

respond® to different behavior of the solutions at ‘“‘radial”

infinity or on the event horizon. A particular choice is deter-

mined by the type of boundary conditions desired for a par-
ticular application.

The limiting procedure from a general PD solution to
the Kerr geometry is described in Ref. 16; however, we re-
peat it here. One must make the following substitutions,

mieg—0, m-—cM, e—c’, y—cd, qg—cr,

T—>c(—t+ap),
(5.26)

p— —cacosd, o—c3p/a,

and then take the limit as ¢ goes to zero. This procedure
generates the following substitutions:
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¢—1
dr — —dt +adp,d,—3d, J,— (asind)'d,

dq—dr, dp—asinfdf, do —dyp /a,

ao — aa‘p + aZB,,GT — — 8,,?/’ — a? sinZB,

2 > A=(r-2Mr+a’)p'+q — 3

=(r+a’ cos’d),~(g+ip)' — —(r—iacosd)'=p
(5.27)

a —alm—aw), A-—A—awlaw—2m),

which transform all of the equations in this section into the
usual equations for the Kerr geometry.* Similar limits may
be taken to acquire, for example, the Kerr—-NUT metric, the
accelerating C metric, or even the Kerr—-Newman metric,
provided the perturbations considered are purely gravita-
tional or purely electromagnetic, as would be appropriate
when the background electric charge is taken to be of the
same order as the (gravitational) perturbation.

Let us now return to the pure gravitational, sourceless
case and discuss the rest of the geometrical problem. As was
indicated at (3.43), a choice of infinitesimal gauge can al-
ways be made so that §C, = 0 = §C.. Assuming that this has
been done, all gauge freedom has been accounted for except
that of o-gauge transformations. Given then a determination
of 8C,. and 6C. _ from (5.17) and (5.22) above, the Bianchi
equations may be used to determine 87,,, 6I".,, 8T, and
8T —quantities which vanish in the background. In par-
ticular the equations 8B.,, B_; tell us that

5Ty = AV 6C) G, + I + 2V 2I0)SC..,

87 = GV6CY @, + I — 2V 2I05C.

while the other pair may be obtained by the index substitu-
tions 1«53, 2«»—4 (the minus sign indicates that every term
with an index of 2 or 4 shouid have its sign changed as well).

(5.28)

The other connections are somewhat more difficult to
determine. Wald*® has given the procedure for showing that
all perturbations for which either §C.. or §C__ vanish have
the property that only 6C, is nonzero and that these pertur-
bations amount only to perturbations of the seven param-
eters of the PD solution; i.e., that one ends up with only
another PD solution. Since we have made no restraint on the
generality of the PD solution in question, assuming 8C,,50,
for example, there is no loss of generality by assuming that
8C, is zero. That this is so may be seen by simply noting that
any nonzero value of §C, could always be transformed away
by performing an additional perturbation with only §C, non-
zero, which would maintain our assumption of an arbitrary
PD solution. The extra 5C,-perturbations can always be re-
covered Jater by allowing each of the seven parameters of the
PD solution to acquire an extra infinitesimal portion. Notice
therefore that the perturbation is now determined only by
8C.., 5C._ and the perturbation of the seven background
parameters.

Following this reasoning assume that §C, vanishes. The
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other four perturbed Bianchi equations may then be solved
for 8I".,, 6I.,, 85I, and 8T, in terms of the sixteen C 5. An
exampleis 81, = — (3C,)"'C, s,. However, (3.19) permits re-
writing this equation in terms of the (unknown) coefficients
C,zsince, e.g., C 53 = —B”.C . The results are then

%51‘.1 = 1"+ [3C‘ 14 + F, [4C2]4,
l251—‘43 = F+ [1C3]2 + F? [2C4]2’
ro=r, 3Cipn+I 4Gy

6r.=r (G +T_ Car (5:29)

The 61, may be determined in terms of the 677, 81,
and C,; by writing out the equations defining certain com-
ponents of the perturbed Ricci tensor, which vanishes. In
particular those 812, and 842, for which neither index is O
involve the 87, algebraically only and may be solved explic-
itly. We do not write them as the forms are messy and com-
plicated while the procedure is quite straightforward. Lastly
one needs to determine the C,,; themselves. The degrees of
freedom in L,.and L, are already determined by our choice
of gauge such that 8C, = 0 = §C.. (This also requires that
8€C , and 8C _ vanish, determining L,, and L,,.) Therefore,
there are only 12 components of C,,; to be determined.

The o and 7 dependence of C,,; must surely be of the
form of Fourier coefficients, inherited from 8C.. and §C_.,
which implies that they are effectively functions of only two
independent variables. Therefore, it would seem that the 24
first structure equations, (2.3), which are first order partial
differential equations for the C,; in terms of 6, and 61,
would suffice to determine the remaining C, ;. In fact, how-
ever, the equations cannot be solved for the dC,;/dg and
dC.,5/dp, since the associated matrix is singular. This is sim-
ply an indication of the fact that the C,, are still subject to
some gauge conditions so that they cannot be determined
uniquely by just the 8C . The work of Demianski®' is an
example showing a particular method by which this solution
may be obtained, having imposed sufficiently many gauge
conditions. Much more general, however, are the complete
solutions to this problem for the Kerr metric (with a specific
choice of gauge) recently obtained by Chandrasekhar.”” We
are attempting a general reduction of the problem to specify
the separation of the gauge-dependent details from the es-
sential ones, but have not completed this procedure.

6. CONCLUSIONS

The present work has the aim both of generalizing the
work of Teukolsky on the separability of the wave equations
for the conformal curvature of a perturbed space-time, and
of putting the structure associated with this separability into
a covariant format. The latter aim necessitated the extension
of the usual covariant (tensorial) structures over a manifold
into the bundle of representation spaces of the Lorentz

APPENDIX

group. This extension provided a compact, algebraic ap-
proach to the relevant equations, allowing them to be manip-
ulated with relative ease. The result has been to show the
decoupling, for an arbitrary massless (spinor) D (0,s) field {or
D (s5,0)], of those wave equations corresponding to extremal
helicities in an arbitrary type D background geometry. As
well, it has been shown that, in such a background, the solu-
tion of these wave equations can be reduced to the solution of
ordinary differential equations, in PD coordinates, only for
the spins 0, 4, 1, and 2.

In the important gravitational case of spin 2 we have
shown that gauge conditions can be so chosen that the entire
perturbed conformal tensor, 8C ,, can be determined. Then
we have indicated how these might be used to determine a
general algorithmic path to the lower-order parts of the per-
turbed metric structure, which depend on yet more gauge
choices, although this program has not yet been carried out
in all detail. Also this technique shows some promise when
applied to the Einstein-Maxwell perturbation system in
which both spins 1 and 2 are simultaneously perturbed, al-
though any actual solution is as yet unavailable.

We believe that the approach to tensor quantities via
the higher-order representations of the Lorentz group (pio-
neered by Debever'?), can be used effectively to determine
the general structure of other problems as well. An example
of this is given by our demonstration that the only require-
ment for the decoupling of orne of the wave equations (such as
for 8C..) is that the space-time be algebraically special. This
fact should motivate study of perturbations to background
spaces other than type D. A particular case of clear interest
would be those of type N, corresponding to perturbations
over sourceless gravitational waves. We also point out the
work of Cohen and Kegeles,* who have been looking at
Deybe potentials for massless (sourceless) fields. They find
that the condition that a space-time be vacuum algebraically
special permits for a description of such perturbing massless
fields (for spin s = 0, 4, 1, and 2) in terms of a single Deybe
potential, which must satisfy a wavelike equation. Since this
potential is a single (complex) scalar quantity the equation is
“already decoupled” and one may proceed to determine the
components of the perturbing field itself using only differen-
tial operations.

Additionally, another relevant problem concerns the
solutions of equations (5.18), which determine R (¢) and
S (p), presumably by numerical techniques. There are two
essential prerequisites for such a program. The first is a bet-
ter understanding of the general PD solutions, especially
those which have nonvanishing acceleration parameter. It
appears this would be a logical additional step in applica-
tions to binary stellar systems with condensed objects. A
second need is to properly organize the dependence of the
solutions on the many parameters so that the essential phys-
ics of the problem can be clearly understood.

For convenience of the reader we display explicitly the components of the D (0,1) [and D (1,0)} projection operators defined

in (2.8):
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0 s¢  —Va2se 0

B Y 0 0 —Vas°,
gaaﬁ='§— _ > (Al)
Vase o 0 58
o V2se  _se 0
0 59 o Ve
. _5¢ 0 Vas:e o
Fé o p=— . (A2)
2 0 Vasi o _sd
“Vasd 0 Y 0

In addition to the properties listed in (2.9), other useful relations satisfied by the #“ ; are

42, P =858 +ig g s (A3)

Do PP =27 1 8, P, (A%
We also note a few of the properties of the Z (2;1,1) projections W ¢ b =274 7T b w8

Wab W, =555, (A5)

Wb oW o5 =878, —ig .sg ™, (A6)

a 1 agob 1 a b
ab sym 5+6b, —‘—_5067 —:5+50
W = Va2 V2 : (A7)
sym  sym 595 —1546¢
sym  sym sym 5968

where the notation sym designates the symmetric entry.

The generators of SL(2,C )—a basis for its Lie algebra—are very important to the details of all the discussion in this article.
However, for the purpose considered we only need the generators restricted to the representations D (0y) (and their complex

conjugates), which are just the usual angular momentum matrices # ) = —iJ @ which, for every (), satisfy the commutation
relations

[/a’/b ] — nabc/v (AS)
We merely note the well known fact that for j=1, the 3 X 3 matrices (,# “)*° can be represented by

(fDaybe = _gabe (A9)

as can be verified by explicit insertion into (A8). The generators for [D (0,1)]* wouldbe I® # M4 4 7V g [ Therefore,
using the renumbering operator Z ,“°, one obtains

S ’(2)“,13 =Z,alp ef(‘Sﬁ/ madf + 5;/ Dac)y= — 29%Z 4 dZBcd» (A10)

where it is probably useful to actually write out the matrix
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0 0 0
0 0 V3se
ifP0 = o -Vise 0

Vase IVEY T

2w Va2se 0

__5(”)

V284

—258

s —Vase

The useful relation for the product of two such # s is given by

BC d ., b B C
/(2)(1/18//((2)[)/4(‘z%gabgBC_zhBCDZDab__%nabc/(Z)c __217ac ] efZ ceZ af

The proof of this relation is performed by starting with (A 10) and repeatedly using the product relations for Z ,“°,

1
ZAabZAcd — aa(cad )b . _3_gabng/3’

1
ZAacZBbC z?gabgAB +h*PCZ o —4m abd/(Z)dAB‘

A comparison of the connection 1-forms with the rota-
tion coefficients of Newman and Penrose has already been
given in (2.20). Here we give as well a comparison of the
components of the self-dual part of the conformal tensor.
The comparison is given in the form of a table in which we
list, in order, our notation, that of Newman and Penrose,™
that of Plebafiski,” and that of Bardeen and Press,* and, in
the last columns, the tensorial components:

C.,=2W,= —C =2, = —2C,4,

C.=4Y, = — 20 =4Y,, =4C1224=4C2434;

C,=2Vow,= — Ve =2VeW,= —2V6C,,,
(A15)

CA:4W_1= —2C‘2) 24'1/»1 :4C1312=4C13347

C.=2¥,=—-CP"=2¥,=-2Cp.

A comparison with the spinor components is given in (4.7).
It is also worthwhile to recommend the work of Ernst* in
which a more detailed comparison of many useful notations
is made.

'A. Einstein, Sitzber. Preuss. Akad. Wiss., 688 (1916); 154 (1918).

*C. Lanczos, Z. Phys. 31, 112 (1925); E. Lifshitz, J. Phys. USSR 10, 116
(1946); T. Regge and J.A. Wheeler, Phys. Rev. 108, 1063 (1957).

P.C. Peters, Phys. Rev. 146, 938 (1966); F.J. Zerilli, Phys. Rev. D 2, 2141
(1970); W.H. Press, Astrophys. J. 170, 1105 (1971); D.M. Chitreand R.H.
Price, Phys. Rev. Lett. 29, 185 (1972); R.H. Price, Phys. Rev. D §, 2419
(1972); J.M. Bardeen and W.H. Press, J. Math. Phys. 14, 7 (1973); S.
Chrandrasekhar, Proc. R. Soc. London, Ser. A 343, 280 (1975).

‘S.A. Teukolsky, Phys. Rev. Lett. 29, 1114 (1972); Astrophys. J. 185, 635
(1973).

R. Kerr, Phys. Rev. Lett. 11, 237 (1963).
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V3o 0 (A11)
0 0
0 0
(A12)
(A13)
(A14)

r
¢Examples include J.B. Hartle, Phys. Rev. D' 9, 2749 (1974) and S.
Chandrasekhar, Proc. R. Soc. London, Ser. A 352, 325 (1977).

’S. Chandrasekhar, Proc. R. Soc. London, Ser. A 345, 145 (1975); see also
Refs. 44 and 48.

!B. Carter, Commun. Math. Phys. 10, 280 (1968). The connection between
separability and second-rank Killing tensors may be found in M. Walker
and R. Penrose, Commun. Math. Phys. 18, 265 (1970).

°J .M. Stewart and M. Walker, Proc. R. Soc. London, Ser. A 341, 49 (1974).
°E.T. Newman and R. Penrose, J. Math. Phys. 3, 566 (1962).

'R. Geroch, A. Held, and R. Penrose, J. Math. Phys. 14, 874 (1973).

1’See the pioneering article by R. Sachs, Proc. R. Soc. London, Ser. A 264,
309 (1961).

M. Cahen, R. Debever, and L. Defrise, J. Math. Mech. 16, 761 (1967). The
result was announced earlier by R. Debever, Cah. Phys. 18, 1 {1964). See
also M. Carmeli, Nuovo Cimento A 7, 9 (1972).

“R.G. McLenaghan and N. Tariq, J. Math. Phys. 16, 2306 (1975).

UR. Debever, Bull. Cl. Sci. Acad. R. Belg. 62, 662 (1976); L.P. Hughston, R.
Penrose, P. Sommers, and M. Walker, Commun. Math. Phys. 27, 303
(1972).

'eJ F. Plebanski and M. Demianski, Ann. Phys. (N.Y.) 98, 98 (1976).

"G.J. Weir, “Type D Spaces and Quasidiagonalizability,” Ph.D. thesis,
University of Canterbury, Christchurch, New Zealand, 1976 (un-
published). One may also check case by case through the table of W.
Kinnersley, J. Math. Phys. 10, 1195 (1969).

¥T. Levi-Civita, Atti dei Acc. Lincei Rendiconti 27, 343 (1918).

'W. Kinnersley and M. Walker, Phys. Rev. D 2, 1359 (1970).

°D.M. Chitre, R.H. Price, and V.D. Sandberg, Phys. Rev. D 11, 747 (1975).
'For a discussion of some of the difficulties associated with this problem
see, e.g., D.M. Chitre, Phys. Rev. D 13,2713 (1976). Alsosee V. Moncrief,
Phys. Rev. D 10, 1057 (1974); F.J. Zerilli, Phys. Rev. D 9, 860 (1973).

!A.L. Dudley and J.D. Finley, III, Phys. Rev. Lett. 38, 1505 (1977). [Note
errata, Phys. Rev. Lett. 39, 367 (1977).]

"We use a metric of signature +2 and generally follow the conventions of
J.F. Plebanski, “‘Spinors, Tetrads and Forms,” Centro de Investigaciones
y de Estudios Avanzados de! Instituto Politécnico Nacional, Ap. Postal
14-740, México 14, D.F. México (unpublished). See as well J.F. Plebanski,
J. Math. Phys. 16, 2395 (1975); G.C. Debney, J. Math. Phys. 12, 1088
(1971). Greek indices run from I to 4, while lower case Latin indices taken
onthe values +,0, — and upper case Latin indices take on the values + +,
+,0, —, — —, except in Sec. 4 where they are used for spinors and take the
values 1, 2. A comma is used to denote partial differentiation, either in a
coordinate direction or a tetradial direction, while a semicolon denotes the
usual covariant derivative (acting on Greek indices only). Square brackets
denote antisymmetrization over those indices of the same kind which are

contained between them while round brackets denote a similar symmetri-
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zation. The symbol & is the usual tensor product, while ® is the symmet-

ricpart: a® B=4(a®B+L®a)

*In addition to the information in Ref. 23, a good background on differen-
tial forms may be obtained from C.W. Misner, K.S. Thorne, and J.A.
Wheeler, Gravitation, parts 111 and 1V (Freeman, San Francisco, 1973).
»E.P. Wigner, Ann. Math. 40, 149 (1939); S. Weinberg, Lectures on FParticle
and Field Theory, Brandeis Summer Institute in Theoretical Physics
(Prentice-Hall, Englewood Cliffs, N.J., 1965), Vol. 2.

*We use a definition of duality which is arranged so that the dual of the dual
of any p-form is exactly that p-form again. If

0= —w &N N

p' e,

is an arbitrary p-form, then
L, ’ .,
IR R A A

is a p’-form, where p' = n — p, n is the dimension of the manifold in ques-
tion (four in the present discussion), and the nature of the signature is given
by s which is either 0 or 1 depending on whether the metric is positive

definite or of the Minkowski type, respectively, while ,, ., is the tensor

made from the Levi-Civita alternating symbol,
T, = [(— 1)0et@,)] o

(Note that in our null tetrad basis, 7' = + i = 7124.)
7'For 4 ap-form and Bag-form, p>>¢, the right interior product is defined by
B A=*(BA*4):W.Slebodzifiski, Exterior Formsand Their Applications
(Polish Scientific Publishers, Warsaw,1970), p. 396. Also the contraction
of the two p-forms is denoted by
B4 = (—]- B, . e"N e")(i A" N A e"")
q' g

FORD I

=(B

o € B e ® A, e @ @)

=B, . A @m0l e e'r.

»E, Cartan, Lecons sur la Géometrie des Espaces de Riemann (Gauthier-
Villars, Paris, 1946), Secs. 187-92.

»See S. Kobayashi and K. Nomizu, Foundations of Differential Geometry
(Interscience-Wiley New York, 1963), Vol I. Also see Ref. 13.

P L. Chrzanowski, Phys. Rev. D 13, 806 (1976).

M. Demianski, Gen Rel. Grav. 7, 551 (1976).

22For instance, see the nice discussion, in a somewhat different notation, of
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A L Janisand E.T. Newman, J. Math. Phys. 6, 902 (1965). It is clear from
the exponential formulas given in (3.23) that this parametrization (and
products thereof) covers all elements in the component of O(3,1) which
contains the identity.

“See, for example, the discussion in Chap. 20 of Misner, Thorne, and
Wheeler, cited in Ref. 24.

*An early indication that this could be done was the procedure givenin P.L.
Chrzanowski, Phys. Rev. D 11, 2042 (1975). A particular example where
the complete solution is determined in a special case is given in Ref. 30.

“M.P. Ryan, Phys. Rev. D 10, 1736 (1974).

*Although we have not seen any related printed material, the inspiration for
this approach and some consequences that it generates in Sec. 5 were
generated by a talk by S. Chandrasekhar given at the Eighth International
Conference on General Relativity and Gravitation, Waterloo, Canada,
Aug. 1977.

“D.Z. Freedman and P. van Nieuwenhuizen, Phys. Rev. D 14, 912 (1976);
A. Das and D.Z. Freedman, Nucl. Phys. B 114, 271 (1976).

“For a discussion of the spinor notation see F. Pirani, Lecutres on General
Relativity, Brandeis Summer Institute in Theoretical Physics (Prentice-
Hall, Englewood Cliff, N.J. 1965), Vol. 1; and also Ref. 23.

“P.A.M. Dirac, Proc. R. Soc. London, Ser. A 155, 447 (1936); J.F. Ple-
banski, Acta. Phys. Polonica 27, 361 (1965).

“H.A. Buchdahl, Nuovo Cimento 10, 96 (1958); and see the second paper of
Ref. 30, Eq. (9.13).

“See as well the first paper of Ref. 3, Eq. (4.10) and the footnote following.

“The coordinate ¢ used here is introduced in Sec. 3 of Ref. 16, and is the
negative inverse of the symbol ¢ used in earlier sections of that reference.

“This version of separability, where there is an additional known (multipi-
cative) factor, is known as R-separability. See C.P. Boyer, STAM J. Math.
Anal. 7, 230 (1976).

#S.A. Teukolsky and W.H. Press, Astrophys. J. 185, 649 (1973).

#J.B. Hartle and D.C. Wilkins, Commun. Math. Phys. 38, 47 (1974).

*This required o-gauge transformation is then the explanation of the rather
strange factors p>* which occur in Teukolsky’s table of separable forms of
8¢, over those of 8¢, .. (The factor ¢ + ip becomes Teukolsky’s factor
p in the limit to the Kerr geometry.)

“'S.A. Teukolsky and W.H. Press, Astrophys. J. 193, 443 (1974).

“R.M. Wald, J. Math. Phys. 14, 1453 (1973).

*S. Chandrasekhar, Proc. R. Soc. London, Ser. A 358, 421, 441 (1978).

*J.M. Cohen and L.S. Kegeles, Phys. Lett. A 54, 5 (1975) is a summary of
the results without proof. J.M. Cohen and L.S. Kegeles, Phys. Rev. D 10,
1070 (1974) gives the details of the construction for spin 1, while a current
preprint of theirs gives details for arbitrary spin s.

S'F.J. Ernst, J. Math. Phys. 19, 489 (1978).
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On the completeness of the natural modes for quantum

mechanical potential scattering

B. J. Hoenders
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The Netherlands
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The set of natural modes, associated with quantum mechanical scattering from a central potential of finite-
range is shown to be complete. The natural modes satisfy a non-Hermitian homogeneous integral equation,
or alternatively, are solutions of the time independent Schrodinger equation subject to a recently
formulated nonlocal boundary condition (the quantum mechanical extinction theorem). An expansion
theorem similar to that of Hilbert~Schmidt is formulated, valid for values of the solution of the
scattering integral equation inside the range of the potential. The boundary conditions generated by the
quantum mechanical extinction theorem are shown to be closely connected with the Jost function.

1. INTRODUCTION

For a long time attempts have been made in the theory
of quantum-mechanical potential scattering to define the so-
called natural modes of the scatterer. The first ones who
tried to define the natural modes were Kapur and Peierls.!
However, as it appeared to have been first pointed out by
Siegert? their theory suffers from several unphysical phe-
nomena like the dependence of the resonances upon the en-
ergy of the incoming wave.

Considering central symmetrical scatterers, Siegert?
formulated another definition for the natural modes which
leads to physically much more satisfactorially results. His
theory was completed by Humblet and Rosenfeld.’ An ex-
tensive survey of the literature on this subject can be found in
the review article by More and Gerjoy.*

The definition of the natural modes given by Humblet
and Rosenfeld’ is essentially one-dimensional, because they
restrict themselve to central symmetric potentials. A general
definition for natural modes for quantum-mechanical poten-
tial scattering, as well as for electromagnetic scattering, has
been formulated by Pattanayak and Wolf*? (see also Wolf®),
Their definition applies to genuine three-dimensional scat-
tering problems and reduces to the Siegert—-Humblet-Ro-
senfeld definition if the potential is central symmetric. A
review of their theory, from which the basic relations of this
paper are derived, is given in Sec. 2.

The natural modes can be shown to be the solutions of
the radial Schrodinger equation
14,3 I+ ]
—_————r—t— U k? k)=0,
[ r or 8r+ 7 U@+ Y (r:k)

(1.1)

subject to the conditions that y, is regular in the interval
0<r<a, and

k[B(k)x,(a;k)+C(k>ix,(a,k)]=o, 12)
da
where
BK)=2- 4 (ka), (1.3a)
da
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C k)= 4" (ka), (1.3b)

U(r)=2ﬁl2 v, (1.3¢)
and a denotes the range of the central symmetrical potential
V (r). {Siegert,” Humblet and Rosenfeld,* this paper, Sec. 2.
The condition (1.2) is usually obtained from the requirement
that both the field and its normal derivative are continuous
across the surface of the sphere with radius a]. The purpose
of this paper is to construct a Sturm-Liouville type of theory
for the set of functions (natural modes) satisfying Egs. (1.1)
and (1.2) and especially to show the completeness of the
natural modes inside and not on! the sphere with radius a.
Once we have shown the completeness of the natural modes,
we can solve the following initial value problem: Calculate
the field inside the sphere with radius ¢ if at t =0 the part of a
wavepacket inside the sphere is known. To be more specific,
this field can be approximated arbitrarily closely by a series

o +1 N

2 E Ean(NJ’m) Xl(r’k 111) Y;"(a’¢)

[==0 m~- [ n
. h 2
xexpl i kit ), (1.4)
2m

where the numbers &, are the roots of (1.2). The series
2¥a ,(N,lm) y,(rk,) approximates the /,mth Fourier
coefficient of the initial field with respect to the set of func-
tions Y} (0,¢ ) arbitrarily closely for sufficient large N. The
series only determines the field for values of r < a. If the
boundary r=a is to be included, the set of functions

Y (r.k ,,) is no longer complete in the interval 0<r<a. This
point will be discussed in a future paper with Dr. D.N. Pat-
tanayak and is connected with a background scattering
term.

It is unfortunately not possible to use ordinary Sturm—
Liouville theory to prove the completeness of the natural
modes defined by Eqs. (1.1) and (1.2) because the eigenvalue
k explicitly shows up in the boundary condition. However,
the completeness of the natural modes can be shown on us-
ing the calculus of residues. It seems that Cauchy’ was the
first one who used this method, which essentially leads to an
interpolation formula, (Eq. (3.20), to prove the completeness

© 1979 American Institute of Physics 329



of sets of functions. For similar methods and a survey of the
literature we refer to Hoenders.*

The explicit occurrence of the eigenvalues in the bound-
ary condition spoils the hermiticity of the problem and leads
usually to nonreal eigenvalues and nonorthogonal eigen-
functions (see Morse and Feshbach® and Nussenzveig'®).

It has been extensively shown in a previous publication,
Hoenders,* that this type of problem, connected with con-
tinuity conditions on a surface, rather than boundary condi-
tions, arises in many branches of physics. As an example, we
mention the solution of an initial value problem connected
with a sphere, characterized by a scalar constant complex
index of refraction n,, embedded in an infinite medium char-
acterized by a scalar constant index of refraction n,, in terms
of the natural modes of the sphere.

The frequencies of the natural modes are determined by
the continuity requirement on the tangential components of
the electromagnetic field vectors which leads to an infinite
set of equations similar to Eq. (1.2). Another example of a
non-Hermitian problem is constructed by Morse and Fesh-
bach.” They considered a string of length / which is under
tension 7" and supported by a rigid support at x=0and a
nonrigid support x =/. This latter support has enough longi-
tudinal strength to support the tension 7, but it yields a little
to transverse force imparted to it by the string. Suppose this
yielding involves both friction and stiffness of the support for
sidewise motion, so that the relation between the transverse
force transmitted by the string, which is — 7' (dy/dx),, is
equal to R | times the transverse velocity of the support,
(dy/dt ), plus K _ times the displacement of the support y(/ ):

dy

Y R ¥ ik,

) at x=/,
Ox ot

(1.5)

y=0, atx=0.

If we assume that y(x,f ) =v(x)exp( —iwt ) and that y(x,t ) isa
solution of the wave equation

2 1 82
(dxz ¢t ar
we derive from Eqgs. (1.5) and (1.6) that the functions v,(x)
are the solutions of the second order linear differential equa-
tion v, (x)+k 2v , (x)=0, subject to the “boundary”
conditions

(x,1)=0Q (1.6)

7% _ _ikeR v+K v,
Ox

2(0)=0, (1.7b)

We cannot use the results of ordinary Sturm-Liouville
theory to prove the completeness of the set of functions
{v,(x)} because the “boundary” condition (1.7a) depends
explicitly on the eigenvalue. The terminology “boundary
condition” is even misleading because condition (1.7a) is not
generated by a true boundary condition but arises from the
condition that the force at the point 0 is equal to the force at
the point 0'. The eigenvalues even have a nonvanishing
imaginary part which accounts for the damping of the natu-
ral modes (Morse and Feshbach®).

ifx=1, (1.7a)

and w=ck.
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It has been pointed out previously that the conditions
(1.2) have been derived from a general definition for the nat-
ural modes of quantum mechanical as well as electromagnet-
ic scattering by Wolf and Pattanayak.>*'" Atshort survey of
their theory will be given in the following Section 2, whereas
the condition (1.2) will be derived in Section 3.

2. DERIVATION OF THE BASIC EQUATIONS

From the time independent Schrodinger equation

(V44U M),k )=0, @1
where

2mE

k= — .
> @2
2m

U=—-V, .
= 23)

and with the use of Green’s theorem, the following three
identities can be derived:

k)= j G =V WK +3(), (2.4
0=—{Z -2k 2.5)
41
w(r>)=$[2*(r>>—2(r>)]. 2.6)
Here
_ N9 .
z(r)~”[¢(r,k)anc(|r ¢]:k)
—G (jr—r |k )y u(rsk) |de, @7
on
if
G(|r_r’|;k):§x_p(M2_ (2.8)

[r—r

and 7 denotes a finite domain delimited by a surface o and
o asphere « with infinite radius. All points lying inside
the sphere are denoted by r _ and all points lying outside the
sphere are denoted by r_ .

The total wavefunction #(r;k ) is a superposition of the
incoming wave ¥”(r;k ) and the scattered wave ¢ ) (r;k ).
The latter is required to satisfy Sommerfeld’s radiation con-
dition at infinity, and therefore

[[[eecesrcae—ria)

—G(|lr—r'|k )a—z/’ G(r:k )]d0'=0. 2.9)
an

Because the incoming wave satisfies Helmholtz’s equation,
Green’s theorem yields
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U[wm(r';k)(;inGm—r'l;k)

G (r—r o O (150) [do =y (k). @10
n

Combining of (2.5), (2.9), and (2.10) gives the important
relation:

I(r_=¢V(r_k), (2.11)

which has to be satisfied for all values of r _ inside the sphere.
Equation (2.11) is the quantum mechanical analog of the
electromagnetic extinction theorem: The incoming wave is
extinguished by the values of ¢ and dy/dn at the boundary.
Moreover, combination of (2.4) and (2.11) leads to

¢(r<)=f G(|r.—F [V X +9O(r_),
@2.12)

which is the usual integral formulation for potential scatter-
ing for values of r situated inside o. Equation (2.12) can also
be shown to be valid for values of r situated outside o on
using the techniques of this section: Let r be an arbitrarily
chosen point, situated outside o and suppose that o encloses
both r and the scatterer. Combination of Eqs. (2.4)~(2.10)
then shows the validity of (2.12) for values of r situated out-
side 0.

The natural modes for quantum mechanical scattering
are defined by Wolf and Pattanayak,** as those solutions of
the time independent Schrédinger equation.

(V?+k+ U )(r,k)=0, (2.13)
satisfying the nonlocal boundary condition
i ,
Jﬂl/i(r k)G (|r _—r1'|;k)
on
’ a ’
—G(jr_—r |;k)a—¢(r;k)]da=0, (2.14)
n

to be valid for all values of r _ lying inside o. Hence, alterna-
tively, Egs. (2.4) and (2.7) show that these modes are the
solutions of the homogeneus part of Eq. (2.12):

w,,(r<;kn)=J G(|r.—r' |5k )UYW, ).

(2.15)

It is to be stressed that the ordinary Hilbert-Schmidt theory
for linear integral equations with symmetrical polar kernels
cannot be used because the integral of (2.15) depends non-
linearly on k. The completeness of the modes (2.15) will be
shown in the next section.

3. CALCULATIONAL PROCEDURE

Theorem 1: Consider the time independent Schrédinger
equation

[V +k+ U @)]g(r,k )=0 (3.1

in a spherical region of radius a bounded by a surface ¢, and

331 J. Math. Phys., Vol. 20, No. 2, February 1979

assume that U (r)= U (7) is of bounded variation. Suppose
that (3.1) is to be solved subject to the nonlocal boundary
condition

fﬂ:/;( r'k )%G(|r—r’|;k)

—G(Jr—r'|;k )%lp( r';k)|do=0, (3.2)

which has to be valid for a// values of r lying inside the
spherical region with radius e, with

G (r—r'lk )=exp(ikir—r')/r—r'}.
Then

(1) There exists an infinite set of eigenvalues k, and a set
of eigenfunctions (natural modes) ¥(r,6,¢;k,)

(3.3)

(2) The set of natural modes is complete within the
sphere of radius a.

Proof: Following the analysis given by Pattanayak and
Wolf,* we expand the wavefunctions #(r _) into a series of
partial waves (cf. Ref. 10)

W(r_k)=> x ,(r_k)P (cosh), 3.9
1=0

where @ is the angle between the momentum of the incoming

plane wave and the direction of the vector r _ and the func-

tions y , are the regular solutions of the radial Schrodinger

equation for the / th partial wave. The expansion (3.4) and

the expansion

Gar)=k S @I+1)j,(kr Yh$O(kr )P (cosd)
=0

3.5)

for the Green’s function (3.5), valid with 7 _ =min(rj|r') and
r, =max(rr,

where /4 (! is the spherical Hankel function of the first kind
and order / and & the angle between the directionsr _ and r’,
are then substituted in the boundary condition (2.2), which
leads to

-]

2 a (k) ,(kr )P (cos®)=0,

=0

(3.6)

where

a (k)=kaly (@k)h'{"(ka)~y 1(ak)h (" (ka) ]
3.7

the prime denoting differentiation with respect to a. Because
of the linear independence of the Legendre polynomials
P(cos®) in the interval 0< @< it follows that we must have
a ;=0 for all /. Equations (3.7) are a set of Joca/ boundary
conditions imposed on the radial wavefunctions y ,(» _,k).
From now on we will write 7 instead of r _. For bound states
and resonances states the a(k ) vanish. [Pattanayak®s; thus
this is also true for the Jost function Lk )]). We therefore
expect that both functions are closely related to each other
and we will show that in accordance with this expectation
both functions are proportional to each other.
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The Jost function L ,(k ) is defined by (Newton,'? Eq.
12.142)

L,(k)=[QI+ 1)1 ]k
exp( —ym )W{f,, (k,;n), & ,(r.k)}, (.8)

where W denotes the Wronskian,

$hrk)=ry(rk), (3.9)
[, is the solution of the Volterra equation

f1s (k) =iexplim(l— 1) kr)h i (kr)

+J-oc G, (rr kYU, (kr)dr  (3.10)

and
G(r.r' k)= (cosml)'sm(rr')"
XA 1o 1,2kN Ty 2 (K

_J1+1/2(k"’)~]1+1/2(k") }

(3.11)

Combination of Egs. (3.7), (3.8), and (3.9) shows that, taking
r=a,

L,(K)y=0)[QI+D" ] % a (k). (3.12)

We will need the asymptotic expansion of Lk ) for
large values of k. This asymptotic expansion is obtained on
inserting the zeroth order approximation
(=1 !'(kr)h (" (kr) of f,, (k,r) into the integral representa-
tion, Newton," §12.1,

L,()=1+H—i'k" Lw Uk j (kr) f1, (kDT
(3.13)

and replacing the spherical Bessel and Hankel functions by
their asymptotic expansions. Integration by parts leads to

(—1)"exp(2ika) U (a—)
Qik )" +? '

if

L,k)~1+
|k o0,

where UY(a — ) denotes the first nonvanishing derivative
of U(r)atr = a,and U *(a — )=U (a — ), whereas the Rie-
mann-Lebesgue theorem leads to

Lik)=1+0(k™,

Let the numbers 4; be an infinite bounded set of arbitrarily
chosen complex numbers. It can be shown (Hoenders,*
Lewin") that every function which is analytic inside a
bounded simply connected domain D can be approximated
arbitrarily closely and uniformly for all values of k€D by a
suitable linear combination of a sufficiently large number of

functions cos(/ij\/ k);ie,

r<argk<2m, (3.14)

if|k |-, w<argk<0. (3.15)
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(k—a)m“:"za,(n)cosujkm)+o(1), (3.16)

if & denotes an arbitrary complex number. Consider the con-
tour integral

I, (rb)= —— f Hk,b)dr, G.17)
i Jik|=c,
where
Hkb) = &,(r.k )exp(ika)C (k) G.18)
(k—8&™*2L,(k)k —b)
and
CH)ID a,(mcos(A,V k). (3.19)

The numbers ¢, are chosen in such a way that the contour

passes between two successive zeros of the denominator of
(3.18), and b denotes an arbitrary fixed complex number not
equal toany of the zeros of L (k ). From Newton,'? Eq. 12.137

B[rk )=+ Dk~ 'sin(kr— il )
+o(k| ™!~ 'expImél),

O<argk <2, (3.20)
and Egs. (3.14), (3.15), and (3.18) we derive

\H (k,b)|=0fc , 'exp[— ¢, sin(argh J(r—a)l},

ifc,—> . (3.21)
Equations (3.17) and (3.21) lead to

lim 7 ,(r,b,n)=0, ifr<a. (3.22)

Suppose that p denotes a positive number such that the do-
main bounded by the circle [k —8|=peD and does not contain
azero of L (k ). These requirements can always be fulfilled by
a suitable choice of the numbers p and é. Calculating the
integral (3.17) with the theorem of residues if »— 0 and Eq.
(3.22) leads to

X 1B )exp(iba)C (b)
(6—8) "L ,(b)

X I(r9k In) exp( lk In a)C (k In)
n L,( k ln)(k In —b)(k in _5) m2

+f H (kb )dk, (3.23)
he—8=p

if b=£k,,, |b —8]> p, and the summation has to be extended
over all the zeros of L (k ). Recalling that the domain bound-
ed by the circlelk — 8=p does not contain a zeroof L ;(k ), we
derive from (3.16)

J H (k,b)dk|=0(1). (3.24)
k—&l=p
Combination of (3.23) and (3.24) yields
v Ar.b)=L[b)exp(—iba)
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z Xl(r’kIn)exp(iklna)c(kln)
n LI( kln)(kln _b)(kln _S)m-+2

+o0(1), if beD and b£k,, (3.25)

While calculating the residues of the integral (3.17), we as-
sumed that the zeros of the functions L (k ) are simple. This
assumption is commonly made (Rosenfeld and Humblet,’
Nussenzveig'®) and is certainly true for large values of [|.
[Newton,'2 Eq. 12.108, gives an estimate for L ;(k ,,) ifk,,,
is large.] We will not analyze this difficult question but will
conform with the other authors, mentioned above.

The function y (r,k ) is the regular solution of the radial
equation

1 df7.,d I{+1)
—_—— | = U k? k) =0.
[ I ar( 8r) + r +UO+ xi(rk)

(3.26)

Ordinary Sturm-Liouville theory shows the existence of an
infinite denumerable set of eigenvalues & {) and an infinite
set of eigenfunctions y ,(r,k ("), which are regular at the
origin, complete on the interval o<r<a, and zero if r=a. For
every eigenvalue & {,) %k ;,, n=1,2,, we choose a simple
connected domain Dek {,’. Choose b to be equal to k {) in
Eq. (3.20). This equation then leads to the following conclu-
sion: Every eigenfunction y ,(r,k {)) with k {)’ 5k ,,,
n=1,2,--, can be approximated arbitrarily closely in the in-
terval o<r<a by a suitable linear combination of functions
¥ 1(rk ) . (Af k) would coincide with one of the numbers
k,,, this conclusion would be triviall)

This conclusion proves the completeness of the set of
functions { y(r.k,,)} because the set of functions
[ x 1 (rk )} is complete in the interval 0o<r<a. The com-
pleteness of the set of natural modes { y ,(r.k ;) Y ' (6,4))
is now easily established for any function f(r,6,¢ ) which is of
bounded variation in the domain 0<r<a, 0<¢<27m, 0 <O <7
can be expanded into the set of spherical harmonics ¥}

6.¢):

1006)=3 8 a0 ¥r0). (3.27)
1=0 m=—1 X
where
a,, () =J;2 J(r6,0)Y [ (6,4)d2. (3.28)

Because every function a,,,,(#) can be approximated arbitrar-
ily closely by a suitable linear combination of the functions
fx 1(nk 1)) Eq. (3.27) shows the completeness of the natu-
ral modes | y ,(nk ) Y7 (6.6)}.

4. ON THE GENERALIZATION OF THE
HILBERT-SCHMIDT EXPANSION FORMULA TO
THE CASE OF KERNELS DEPENDING
NONLINEARLY ON THE EIGENVALUE

In the preceeding sections we established the complete-
ness of the natural modes { y ,(r _,k ) Y7'(6.4)}, which
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are the solutions of the time independent Schrédinger equa-
tion subject to the nonlocal boundary condition (2.14). The
problem, which arises immediately, in considering the linear
integral equation (2.12) is the derivation of a Hilbert-
Schmidt type of expansion (well-known in the theory of lin-
ear integral equations with kernels depending /inearly upon
the eigenvalue) for the unknown function. Naturally we ex-
pect that the eigensolutions of (2.12) are the most appropri-
ate set of functions to formulate such an expansion.

By heuristical reasoning we will “derive” the desired
expansion. This generalized Hilbert-Schmidt expansion ex-
plicitly shows the dependence of the expansion coefficients
on k, which might be very useful for the calculation of the
scattering cross section near resonances, and so provide a
generalization of the Breit—Wigner formula. For recent de-
velopments connected with this expansion we refer to
Hoenders'* and Pattanayak.'

The expansion for the kind of problems we are analyz-
ing was given without proof by Miranda' and derived by
heuristical reasoning by Pattanayak.!” We will first formu-
late Miranda’s theorem, and then present a derivation that
closely resembles the one due to Pattanayak (I am obliged to
Dr. Pattanayak for making available to me his unpublished
notes on this subject).

Theorem: Let the kernel function G (x,y;4 ) be defined in
the square —a<x<+a, —a<y<a, symmetrical in the
variables x and y, and analytic in 4. Let the function ¢(x;4 )
be the (supposedly) unique solution of the integral equation

8 () =1 (x) +zj TG, (4D)

where the function f(x) is defined and integrable on the inter-
val —a<x<+a. If { ¢, (x;4 )} is the set of eigenfunctions
of (4.1), satisfying the equation

+a

¢,.(d,)=4, GxAL,)é(yh,)dy, (42)

—a

then

s02) =1 +23 |6, [ [ 108,y

x[(x —,1)(1+/12J+a_‘.7_
" "Ja A,

Gt B ,(6)é,(t)dsdty] ) +olxA), (4.3)

if w(x,A ) denotes a function defined on the interval 0<x<a
and regular in A for all xe0<x<a.

The formula (4.3) clearly degenerates into the well-
known Hilbert-Schmidt expansion formula in case
(8/94)G (x,p,A )=0 and w(x,4 )=0.

Heuristic “proof”’: It is assumed that the function
A (x;4 )—f(x)} can be expanded into a series of partial
fractions:

Liset) i S 4,229 owa), @4
A “T A4,
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where w(x,A ) is a regular function of A for all values of
x€0<x<a and y,(x) are functions yet to be determined.
Then expanding the kernel G (x,y,4 ) into a Taylor series
around the point A = A4, up to the first order:

G@ypyA)

GOepdn) + @ = A)G (xpd) + O (A — A,
(4.5) i
and using the identity

A=A —A)+ A4, (4.6)

substitution of (4.4), (4.5), (4.6) into Eq. (4.1) and equating
the coefficients of (1 — 4,)" and (4 — 1,)° leads to

+a

Yx) =4, G xy: ) y)dy 4.7

and
o(x.A,)

=A,,j G Gyl ) oy A )y +A

+a

X Geyd ) f(y)dy

—a

+a
+4, Gxyd )¢, (ydy

+a

A, A
]

4.8)

G xp, AW ,(p)dy .

Equation (4.7) shows that the functions 3, are identical with
the eigenfunctions ¢ , (x), then, multiplying both sides of
(4.8) with 4, ¢ , (x) and integrating over x between
—a<x< +a, yields

b
A,,=—A,,j £ (508 ,(5)dy

X(f ¢ (ydy+AL

<[ 2 G608 ,()6, s ) @y

On using (4.4) and (4.9) we see that (4.9) are exactly the
expansion coefficients of Eq. (4.3).

Itis conjectured that, as in the case of ordinary Hilbert—
Schmidt theory, w(x,A )=0. If this conjecture is true, combi-
nation of (3.4) and (4.3) leads to the generalized Hilbert—
Schmidt expansion of (2.12):

Wr k)= )+ $ 8 vreeke+

n 1=0 m=-1
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XI (r< ’kln)ﬂ;'ﬁgz.(T) U (T)Xl (T’kln)dT
Rpy ~ kYA + kLS55 W (s,8,k,,)x1(5,k )

Xx{tk )USU ) ds dt (4.10a)

if

k) = L Ay (r, k)Y (0,6 ) (4.10b)

and

Wisitk ) =QI+1) j, (k) hP(k 1), ifs<t,
=QI+1) j (kRO (k s, ifs>t.

(4.10c)

For recent developments concerning the conjecture
w(x,A )=0 we refer to Hoenders' and Pattanayak.'®

DISCUSSION

The basic equations of this paper [(1.1) and (1.2)] are
derived from the so-called quantum mechanical extinction
theorem. This theorem is obtained by means of a procedure
with which recently a macroscopical electromagnetic extinc-
tion theorem has been derived (Wolf?).

According to the Ewald-Oseen extinction theorem of
molecular optics, the electromagnetic field due to an incom-
ing wave inside a medium whose response is expressible as
due to a set of dipoles can be thought of as the sum of two
terms. One of these terms exactly cancels the incoming wave
at every point inside the medium, and the other then gives
rise to the actual macroscopical field.

The cancellation of the incoming wave is mathematica-
ly expressed by the extinction theorem (Born and Wolf"®),
the fundamental role of which for the foundations of crystal
optics was already known for about 60 years from Ewald’s
pioneering researches, but the true meaning of which was
not fully understood until very recently. During the last few
years the connection between electromagnetic theory and
the extinction theorem was thoroughly investigated by sev-
eral authors, (Sein,” Wolf,” Pattanayak*-* de Goede and
Mazur®). They all reached the conclusion that the common-
ly made assumption relating to the validity of this theorem
for the microscopical Maxwell equations is too restrictive
and that similar theorems can be derived for the macroscop-
ic Maxwell equations as well. Wolf and Pattanayak then
conjectured that the extinction theorem is to be understood
as a nonlocal boundary condition to which every solution of
Maxwell’s equations is subjected.

In this way they completely changed the status of the
extinction theorem from a theorem applicable only to special
problems into a principle to be satisfied by every solution of
Maxwell’s equations.
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The basic equations of this paper are derived from this
principle. Because the complete set of functions considered
in this paper is not generated by a Sturm-Liouville problem,
we might expect that this set is perhaps overcomplete. This
conjecture is true, as has been indicated by Humblet and
Rosenfeld,’ and a proof of this statement is given by
Hoenders.*"*

The potential considered in this paper is rotationally
symmetric, and we are therefore lead to the question if the
natural modes connected with an “arbitrary” cutoff poten-
tial are also complete within the range of the potential. The
completeness of such sets of natural modes has been proven
by Hoenders,' using the inhomogeneous integral equation
(2.12), with '™ replaced by an “arbitrary” function f(r),
instead of using the Schrodinger equation (2.13) and the
boundary condition (2.14).

The reason for the construction of the proof contained
in this paper is that this particular technique [Eqgs. (3.17),
(3.22), and (3.25)] is rather simple and can be applied to
similar problems which are not easily analyzed by the meth-
ods of the other proof. As an example we mention the prob-
lem of the string, discussed in the Introduction.
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For a C* multiplier w, on R" we define the concepts of differentiability and codifferentiability in the Von
Neumann algebra generated by the regular o representation of R". Analogs of the classical Schwartz
space and its dual are formulated and the case where w is fully antisymmetric is studied. Connections with

the canonical Fourier transform of an earlier paper are investigated.

INTRODUCTION

Let p,g be a canonical pair of self-adjoint operators on a
Hilbert space, H, i.e., self-adjoint operators such that
exp(isp)exp(itq) = exp(ist Jexp(itq)exp(isp) forallrealsand ¢.
It follows that for real @ and b, p + a,q + b are another ca-
nonical pair, and so, by the von Neumann uniqueness theo-
rem, there is an automorphism of the von Neumann algebra
generated by {exp(isp),exp(itq):s,.eR | mapping exp(isp) to
explis(p + a)] and exp(itq) to exp[it (¢ + b )]. This automor-
phism is called translation through (a,b ). We define a con-
cept of cotranslation through (@, ) in this von Neumann al-
gebra, which will be shown to be complementary to
translation through (a,b ). An element 4 of the algebra is said
to be differentiable (respectively codifferentiable) with re-
spect to p if the action on A4 of the infinitesimal generator of
translation (respectively cotranslation) through (@,0) gives
an element of the algebra. Differentiation and codifferentia-
tion with respect to g are defined analgously. The canonical
Schwarz space is defined as the space of elements of the alge-
bra which are infinitely differentiable and codifferentiable.

The Weyl transform is an isometry from L*(R?) into the
space of Hilbert-Schmidt operators on H which for
JEL'(ROINLX(R?) is given by

[ {-exp[i(xp +y)f (x.p)dx dy.

In Ref. 1, the image under the Weyl transform of *(R?), the
Schwarz space of infinitely differentiable functions of rapid
decrease, is studied. We show that this image is precisely the
canonical Schwarz space.

The whole situation may be generalized to the von Neu-
mann algebras generated by w-representations of R*" where
@ is an infintiely differentiable multipler. The preceding the-
ory is the special case when n =1 and w is totally antisymme-
tric. For trivial o, the theory reduces to the classical theory
of Schwarz spaces.

1. The spaces .“'(w,A")

Let R " denote the additive group of n-dimensional real
space, which together with its usual topology has the struc-
ture of a locally compact Abelian topological group. By a
multiplier on R ", we shall mean a Borel measurable
function

w:R"XR"—>T
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(where 7 denotes the multiplicative group of unimodular
complex numbers) satisfying:

(i) o(x:0)=w(0p) =1,
(i) o(x:p)o(x + y:z) =w(xy +2)e( y:2).

Two multipliers w, @ are said to be similar if there exists
a Borel measurable function

h:R"—T,
such that
o(x y)= Mw(x ).
h(x+y)

For any multiplier w, the regular w-representation R is
a map from R” into the space of bounded operators on the
Hilbert space L%(R"), given by

R (5)f (xX)=w(x,5)f (x +5) for all feL*(R").
R (s) is clearly unitary and
R, R _ ()=w(stR  (5+1),
R (0)=1,
showing that R, is indeed an w-representation. It is easy to
see that R is strongly continuous if w is jointly continuous.
Let. / (w,R ") be the von Neumann algebra generated
by { R (s):seR"}.
Lemma: Let @, @ be similar multipliers with
h (x)h
o +(y§) “
Then. / (@,R"),. I (w,R") are spatially isomorphic.
Proof: We have that
R (5)=h()M ,R ()M, ",
where M f(x)=h (x)f (x) for all feL*(R").

It follows immediately that. /' (w,R"), I (w,R") are
spatially isomorphic under the map

w(x,p)= ).

A—M  AM .

For any element acR " there is a natural automorphism of
. ¥ (w,R ") induced by a, known as transiation through a. Let
T (a) be the operator in L*(R") given by

T (a)f (x) =expli(a,x)]f (x) for all feL{(R").

Then we define translation through a, ¢, by
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tA=T(a)'4T (@), AV (w,R").
In particular we haver R (s)=expli(a,s) ]R ,(s) showing
that r, maps the generators R, (s), and hence the whole of
A (w,R"), into .+ (w,R").

Definition: Let Ae.-¥(w,R ") and let {e;} be an ortho-
normal basis for R ". Then we say that A is differentiable in
the jth direction if the weak operator limit

(W lim-t{r A—A}
s 05§ !

exists in ../ '(c;),R"). The limit, when it exists, is denoted by
4A.
We now introduce an operation in.#"(@,R ") which, we
shall see later, is in some sense conjugate to translation.
Definition: Let aeR”, then for A4 (w,R") the cotrans-
lation of A through a, t “ A 1s defined by

t“A=R ,(@)AR ,(a).

Observe that 1 “ At “ B#t“(AB) in general, and that 7 °¢ , 4
=exp[—2i(a,b)}t ,t°A .

Definition: Let Ac. ' (w,R") we say that A4 is codifferen-
tiable in the jth direction if the weak operator limit

(W) lim-{ 1 A —4)
s 08

exists in.-# (w,R"). If the limit exists it is denoted by A/ 4.

Let a,b be the positive integral n#-tuples (a,,....a,),
(by,...,b,). Then let A ,A? denote (4,)“(4,) “-(4 )"
and (4 (4 )*(4 "), respectively.

Definition: The space ./ (w,R") is defined as the space of
elements 4 of. ¥ (w,R ") for which the mixed derivatives
44 A exist for all positive, integral n-tuples @ and b. We
define a locally convex topology on .*"(w,R") by defining the
semi norms |-||% by

42 =144 4],

where ||-|| is the operator norm in LR "). We shall be par-
ticularly interested in C* multipliers, i.e., those multipliers
which are infinitely differentiable. Associated with this defi-
nition of a C * multiplier is the concept of two multipliers
being C *-similar, meaning that the function connecting
them can be taken to be a C*-function.

Bargmann® has shown that each C*-multiplier on R *

is similar to a multiplier w 3,,, for some m, where with a
suitable decomposition R" =R ™ & R™ ® R * we have

@5, (xp.zx'y 2z ) =exp{[(xy)— (yx))i/2}.

Thearem: Let w, w be C=-similar C “-multipliers. Then
#(o,R") and #(o,R ") are topologically isomorphic.

Proof: Suppose w(x,y)="[h (x)h (P)(x )V h (x+)
where 4 is C*, then we know that.#(o,R ") is naturally
isomorphic to. ¥ (w,R ") viathe map sending A€} (w,R")to
M ,AM ;'e ¥ (@,R"). Denoting this map by ¢ we have
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Gt ,A)=M,T(@)y'AT @M ;' '=T@)'M ,AM ; 'T(a)

=t,(¢4).

Hence the structure of translation and differentiation is pre-
served by a change to a C*-similar multiplier. Now,
é[1“R (S ()

=M ,R ,Qa+s)M, 'f(x)
=h (XA (x +2a 4 5)w(x,2a+5) (x +2a+5)

and

t“[¢R ,(5) 1f (x)
=R ;@M ,R ,(s)M ;'R ;(a)f (x)
=hx+a)h' (x+a+s)w(x,aw(x+a,s)
X w(x +a+s,a)f (x+2a+s)
=h () (@)h ' (x+2a+s)olx+2a+s) (x +2a +5).
So
t“[¢R () ] =h(a)yd[t“R ,(5)].
Thus since 4 is C © and since.. ¥ (w,R") consists of the strong
closure of finite linear combinations of the elements R _(s),
A(pA)=¢ (4'4)+2h'(0)p (4),
wherever 4 ‘A4 exists.

Hence the image of .¥(w,R") under ¢ is .*° (w,R ") and
it follows from the above that the topologies are equivalent.

2. The case o =1

We shall study the case in which w=1, i.e., w(x,p)=1
for all all x,p and show that in this case, the space *'(1,R") is
naturally isomorphic to the classical Schwartz space .’ (R").

Let W denote the classical Fourier transform from
LYR")to LX(R "), given by the formula

Wfx)=Qm) ™ 2J-exp[ —i(x,9)lf (s)ds,

for feL'(R"NLY R").
Then we have
WR\(s)W'f (s)=exp(isx)f (x)=M (s5)f (x).

Hence the von Neumann algebra . # (R") generated by

(M (s):seR " } is isomorphic to..#"(1,R") and consists of mul-
tiplications in L*(R") by bounded measurable functions
which, as an abstract algebra is isomorphic to the algebra
L “(R") of bounded measurable functions (with pointwise
multiplication). We shall now study the operations induced
n L *(R") by translation and cotranslation in. ¥ (1,R").
Since

Wt R ()W f (x)=explis(x +a)f (x),

translation in .*’(1,R ") induces translation through a, in the
classical sense, in L (R ").

WI{t“R ()] W' f(x) = exp(2iax)exp(isx)f (x)
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and so contranslation in./#"(1,R ") induces multiplication by
exp(iax)inL *(R").

From the above it is easy to see that the operations in-
ducedin L*(R")by 4 ; and 4 / are, respectively, (classical)
differentiation with respect to the jth variable, and multipli-
cation by 2/ times the jth variable. Now, the norm induced in
L *(R ") by the operator norm in % (1,R") is simply the
supremum norm. Thus if the element A€ (1,R") corre-
sponds to the function geL *(R") we have

4l =144 4|
fal
=sup|x T'x 3"-;3—67g(x1---x ) |
29 ]'... X ""

i.e., the norms ||-||% (a, b positive integral z-tuples), corre-
sponds to the usual norms in (R"). Thus we have proved

Lemma: (1,R ™) is isomorphic, topologically and al-
gebraically, to ./(R").

3.Thecase w=0,

In the case that n = 2m is even, we take w in its canonical
form,

w(x,yx'p') = el = (],
We can reformulate the preceding theory in the language of
quantum mechanics as follows.

Since R ,(s;¢,), R ,(¢e, ;) arestrongly continu-
ous unitary representations of the real line, we have, by
Stone’s theorem that

R ,(s;e;)=exp(is;p;), R ru(tjem+j)=exp(itjqj)’

wherep;, g; ij=1,...,m are (unbounded) self-adjoint oper-
ators. We have the following relationships known as the
Weyl commutation relations,

exp(is,p ;) exp(it;q;)

lexP( is itj) exp( itjqj) exp(is ;p ), i=]J,

exp(it;q,) exp(is;p;), iFJ

(A)
We find that
t(a.mexv[i(zs;p ittiq,) ]
—expfi[Ss. o, +a)+ita ) ]
=eXp[~—i( S a ,-q,.—b,-p,)] exp[i( 25P g ]
Xexp[z’(Zaiq,~b,p,-)] (B)
and

t(a'b)eXP[i( >sipittiqy) ]

338 J. Math. Phys,, Vol. 20, No. 2, February 1979

=exP[i(Z ap;i+b.q;) ]exp[i(zsip i+1iq;)

Xexp[i(Za,p,+biq,)].

According to the von Neumann uniqueness theorem,
the von Neumann algebra ..+ (p,---p,q,---g,) generated by

{exp[i( Nspi+tiq)) ]:si,tieR} ,

where p,, ¢, are any essentially self-adjoint operators on a
common dense domain, satisfying (A}, is canonically iso-
morphic to the algebra B (L*(R™)) consisting of the algebra of
all bounded operators on L%(R ") . The canonical isomor-
phism maps

exp(is,p,) to 1@--wexp(is;p)®-l
and
exp(it;q;) to 1®--®exp(it;q)®®1,

where p,,q, are the unique self-adjoint extensions of the oper-
ators defined on .’ (R ) by

pf )= —iL ),
dx
4o () =xf (x).

(po,qo) are known as the Schrodinger pair and the corre-
sponding representation of the Weyl commutation relations
is known as the Schrodinger representation. We may now
define translation and cotranslation in .4 (p,p,,,q:*q,) by
using (B). Since the generalization to higher values of n is
straightforward we shall study the case n = 2.

We shall make a change of notation and denote
4,4, 4',4°by A o A s 47, A9, respectively.

Lemma: Let Ac.(p,q). Then 4 and its adjoint 4* map
L*R )into #’(R ), the Schwarz space of infinitely differentia-
ble complex valued functions which decrease at infinity to-
gether with their derivatives, faster than any polynomial.

Proof. Put

r A:%(APA+A(1A),
i

p

r A_—_z_l_.(AqA—APA).
1

q

Then

r,4=(w) lim;[exp( iap.) —exp( —iap,) 14
a -02iq

=(w) ling)[ Via)A]

and
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I A =(w) lim——[exp(ibgo)—exp( —ibg) 14
a—02ib

=(w) Lim[W(5)].

Let fe.”(R ) and geL¥(R ). Then
{Agp™q"f>

= lim  <AgV(a)-V(a mIW (B)-W (b )

ay-a, bib,

= lim
aq-a, b-b,-

=&* -
Hence Ag is contained in D ([p "¢ " 1*), the domain of
[p™q"]* and hence Age.* (R ) since it known’ that

WL ) WHO)E( a, )V a)Mg

nD(pmg"1*)=SR).
Since if X is an element of ¥(p,q), then so is X*, and hence
X* maps L(R ) into F(R).

Theorem: 5 (p,,q,) consists of all operators 4 of the
form Ah (x)=§ d (x,p)h (y) dy with € (R?). The map A—d
is a topological isomorphism of . (p,,q,) with #(R?).

Proof: Let A be an operator in.4 (p,,q,) =B (L*(R )) giv-
en by

Ah (x)-—:fd (x )k (») dy, with de .7 (R?).

Then ¢, ,,Ah (x)= fexplia( y—x)]d (x+b,y+ b )Yr (p) dy.
Thus

lim<i[t(a‘0)A —A Jhik >

a—0\aq

:limJJaL{exp[ia(y—x) 1—1j

a-~0

Xd (x)h (P)k (x) dx dy

=J f iy —x)d Ceph (Wk () dx dy,

since the convergence of the integrand is uniform since
de.” (RY).

Hence
4,4k (x)= f i(y—x)d (xy)h (y)dy.
Also,

. 1
(e oo —4 k)

= lim f f Ldc+by+b)—d Gl () k@) dxdy
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_ f f (%Jrg;)d Gk ()k () dx dy,

since, again, the convergence of the integrand is uniform.
Hence

da d )
4 Ah(x)=j|—+—d x,)h(y)dy
A= (F-+T ) o ()
Similarly we find that

aran=[ (I;‘i“%)" ) () d

494k (x)=|i(x+y)d (x,y)-h (p) dy.

Thus APA, AqA, A*PA, A%A areof the same form as 4, i.e.,
integral operators with kernels in (R 2). Proceeding induc-
tively we find that 4 has all derivatives and coderivatives of
every order, i.e., 4.7 (p,,¢,). Hence the class of operators of
this form is contained in % (p,,q,).

We now show that if 4€(p,,q,) then A4 is a Hilbert—-
Schmidt operator, i.e., Z||4¢ ;]|* < « for every complete
orthonormal set {@,}. The operator (p 3+¢q 3)™" satisfies

1

2 2y-1

+ hnz—_hn’
(potqd) 2nt1)

where 4, is the nth normalized hermite function,

CDexp(an L

b (x)=——2—
‘/znn!ﬂ.l/z d"

[exp(—x?) ].
Hence
1
2 2y-1 2
—+ h 2= <

S ips+a)h. =3 a1y <%
and so (p 5+¢ 2)" is a Hilbert—-Schmidt operator. Now since
A maps LX(R ) into S(R), (pi+g DA is well defined and

(po+9)A=( T, yA+( T y4.

Thus (p 5+ A4 €4 (poge) =B (LR )). Since
(Pi+q3)(pi+qdA=A4 , Ais Hilbert-Schmidt since the
class of Hilbert-Schmidt operators is an ideal in B (L(R)).

bl

Now since the class of Hilbert-Schmidt operators on
L*(R) is precisely those operators which may be written as
integral pperators with kernel in L*(R?), it follows that the
class of operators with kernels in (R?) is dense in the class
of Hilbert-Schmidt operators and thus in %' (p,,q,).

Now we only need show that the class of operators with
kernels in (R?) is closed under the topology of .% (p,q.)
and that this topology is equivalent to the standard topology
on S (R?).

We define a new system of norms on .“(p,,g,) by
4] 2.=114°%4 4|,
where ||4||, is the Hilbert~Schmidt norm given by

l4ll,= z |[4¢ ||’ for some complete orthonormal set

(¢}

If A4 has kernel d in (R?), then ||4]|,=||d||, the L? norm of d.
Thus
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4l 2= =|dll &2

|
ax a,

where @', b’ are related, linearly, toa and b. But the topology
on .¥'(R?) induced by the seminorms ||d|| 5. , is known* to be
equivalent to the topology induced by the seminorms,

lld|l & =sup
e

xb;‘ia—,d(x) .

Hence the result is proved if it can be shown that the topolo-
gies on 7(po,q.) are equivalent.

Since ||4]|<||4]l,, it follows that
4l g <[4l 2.

Conversely for Ae.*(p,,q.) we have
A=(ps+q3)'(p5+q0)

and using the inequality
14B|[.<]|4]L|| B]I,

we have

I4B|.<[I( 25+ [ll(P 5 +g A,

s0 ||4]| 2,<C||4|| & for some a’, b’ and hence the result is
proved.

It immediatly follows that for an arbitrary canonical
pair (p,9).(p,q) is toplogically isomorphic to .#(R?) since
S (p,q) is topologically isomorphic to .%(p.,q,) under the
map induced by the canonical map from .4 (p,q) to
A (Pogo). For Ac.% (p,q) we say 4 has kernel d if 4 is the
kernel of the operator in %' (p,,q,) which is the image of 4
under the canonical map.

4. Theorem

Theorem: The space ./ (w},,,R ") is topologically iso-
morphic to the Schwarz space #(R").

Proof: Let (@ 2" ,R*™")® & (1,R*) denote the alge-
braic tensor product of . (w ",R *"') and .¥’(1,R%). Since
A (w45, ,R") is naturally isomorphic to the norm comple-
tion of the algebraic tensor product

A3 R™y& 4 (1,R*), and since
AbAe AB=A"" (48 B), it follows that
Y(ng,R Y& .~ (1,R*) is a dense subset of

(w4, ,R"). Weknow that #'(w 37 ,R *™) is topological-
ly isomorphic to .#’(R*™) and that .*’(1,R¥) is topologically
isomorphic to (R *). Denote these isomorphisms by ¢, ¥,
respectively. But the topology on .*'(R>™) can be generated
by a system of inner products {-,->,, and the topology on
#'(R") by a system of inner products {-,->,.*

Define the inner products( Sy Loy O
Ll R¥), £(1L,RF*) respectively, by:

<A’B> n :<¢A’¢B> n*
(C.Dy |, =YCYD> ,.
Then the topologies on .*'(w 37,R *™) and .”'(1,R*) gener-

ated by the inner products <-,->,, {-,->,., respectively, are
equivalent to their natural topologies.
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Define the topology on tensor product
(¥ R*™)e.#(1,R*) by the inner products

<ZA B, ZCD>

(n,m)
::E;<AHC> Dj>;n'

Then this topology is equivalent to the topology of

S (w4, ,R") and so it follows that # (w5, ,R") is topo-
logically isomorphic to # (@37 ,R*")® ,.#(1,R ,), the
completion of the tensor product in the above topology. But
since (@ 3" ,R*"),.#(1,R *) are nuclear** it follows that
A(@3",R*™)® ./ (1,R*) is the natural completion and
hence it is isomorphic to (R *")® ,.*’( R *) which is iso-
morphic to /' (R").

5. The spaces . '(w,R")

Definition: The space .*"'(w,R") is the space of all con-
tinuous linear functionals on . (w,R"), i.e., the linear func-
tional X is an element of .*"(w,R") if

xA)CliA]l 2

for all Ae(w,R") and for some constant C and nonnegative
integral n-tuples a, b, where (X,4 ) denotes the value of X on
A.

~(@,R ") has a natural topology as follows. The se-
quence { X ,}1 X, €5 "(w,R ™) converges [to Xe.”"'(w,R™)] if
and only if (X,,4 ) converges [to (X,4 )] for all 4. (w,R ").

Theorem: .¥"'(w,R") is topologically isomorphic to
S(RM).

Proof: This follows immediately from the fact that
S (w,R") is topologically isomorphic to .*'(R"). We shall
be particularly interested in the case n =2 and w(x,y
x'y'y=expli(xy’ - x})], i.e., the space of continuous linear
functionals on .*(p,q) which we denote by .*'(p,q). We have
a map X—¢& from .”'(p,g) to . (R?) given by

(X,A)=(&,a) for all 4. (p,q)
with a the kernel of 4. We say that £ is the kernel of X.

Example 1: Let Be +(po,q0). Then B naturally defines
an element of .*"(p.,9,) (also denoted by B) given by

(B.A)=tr(BA), tr(4)=S<Ad .4

with {@,} a complete orthonormal set. Since [tr(BA )|
<||Bltsidl and

tdl<tr[(p+9 ) 1(p5+q )4l
it follows that B is continuous.

m

Example 2: The unbounded operator p ' g  is associat-
ed with a member of .*"'(p.,q0) by

(p3go.A)=tr(pgqop)d

<trl(po+aa)”W(ps+aorpaaodll,
SO p it g & 1S continuous.
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Examples 1 and 2 may be generalized to an arbitrary
canonical pair (p,q) since the von Neumann algebra ./ (p,q)
has a translation invariant trace.

Example 3: Define 6, by
(8,4)=d (0.0)
where d is the kernel of 4, i.e.,
G A)=E08d),
where § is the delta distribution in ¥'(R ).

Definition: Let Xe.¥'=(p,q). Then we define the de-
rivatives and coderivatives of X by

(4,X4)=—(X,4,4)(4°X,4)=(X,474),

(4,X4)=—(x4 ,4)(4X4)=(X,44),
for all 4e.”(p,g).

It is easy to show that if B (p,q) defines an element of
7'(p,q) by (B,4 )=7(BA ) then the derivatives and coderiva-
tives of B as elements of .*"'(p,q) are precisely the derivatives
and coderivatives of B as an element of #(p,g).

Example 4: Define the bounded operator M in L*(R)
by
Myf (x)=H (x)f (x),

with A the Heaviside function

1,x>0,
H =
) {O,x <0.
Let H_ be given by

(H ,.A)=tr(M 4 A), for all 4e.7 (p.q).
Then if A has kernel d,

(H,.A )=J;oc JOOO d (xp)dx dy,
(A H, A)=—(H,A4,4)

> (3 a)
= 2+ N (xp)dx d
I

=d (0,0)
=(5,4),
ie.,
A4 H, =6,
Theorem: Let Xe.”"(po,q,): Then X is a polynomial

combination of derj_vatives and coderivatives of a Hilbert—
Schmidt operator X.

Proof: Let ye.*’(R?) be the kernel of X. Let
a ,m =k ,h ), Where h, is the pth normalized hermite
function.

Then by the regularity theorem for .%’(R?) * there exist
positive integers r,s and a constant ¢ such that

kznm|<c(n + 1)’("‘[ + l)s for all n,m.

Letanm :ﬂllm(n+1)r+l(m+1)s+l’
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then

Y Buml=3 1)~ 1) 722

<GS (+1Mm+1) <.

Define X= 28,,,,(h, ®h ) €L¥(R?), then if Xis the opera-
tor with kernel ¥, X is Hilbert-Schmidt. Let

D= —4(47—4,) 44, +47),
W=—34944 y—1(4, -4*7)

Then

([P+3 14 [¥+517'X4)
=(X, [@+L "' [¥+414'4).

If A has kernel Zy , .4 , ® & ,,, then the R H.S. equals

(X, SV um D) n+ )k k)
=3 Vi + D) m+ DB,

=Eynmanm :(X’A ) N

Hence
X=[®+5 1V [P+ 17X,
Each element of .*'(p,q) may be regarded as a map from

Z(R) into (R as follows. Let fe.# (R ) and define
Xfe”'(R) by

Xfg)(Xfey), forallge (R),

where f® g is the element of .*'(p,q) given by

(feg)h (x) =ff(x>g( Wh (9)dy.

A detailed account has been given in Refs. 7 and 8 of
linear mappings from a vector space @ into some space of
linear functionals on @, @'. The above is a special case of
this.

Since (R ) may be identified with a subspace of #'(R")
it seems natural to talk about generalized eigenvectors and
eigenvalues of Xe.”'(p,q).

Definition: Let h, be the pth normalized hermit func-
tion, then f&.%”'(R ) is said to be a generalized eigenvector of
Xe.”'(p,q) with eigenvalue A if

S (Xge h,)(fih,)=1(fg)

for all ge.”’(R ) where the equation is taken to mean that the
L.H.S. converges and equals the R.H.S.

Example: Consider 3p’—&,_ as an element of /"(p,g).
Suppose we have
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for some fe.*'(R ) and all ge (R ). Then
=—3(/g")—A48(0)=1(fg),

where 4 =24, (0)(f4,).

The above gives

—3(f".8)—A4(6.8)=4(/g)

ie.,
If "+ Af=—A6,

which has the following solutions:

(ﬁ@=J}nx—Mx@ﬁu,

A=—1,
A=1k*>0, (f;g):J- sinkx-g(x)dx ,

A=1k*>0, (fg) =r cosk (x —a)g(x)dx

+ J cosk (x+a)g(x)dx,
0

where —k =cotka.

6. CONNECTIONS WITH THE FOURIER-WEYL
TRANSFORM AND THE CANONICAL FOURIER
TRANSFORM

The Fourier—Weyl transform from L*(p,q), the space of
Hilbert-Schmidt operators in.#"(p,q), onto L*(R?) is defined
in Ref. 9. For 4. (p,q), the Fourier-Weyl transform U_A4 is
given by

a

(U A)s,t)= o str{expl—ialsp+1g)l4]

with a a nonzero real number.
Lemma: U, maps .%(p,q) continuously onto *’(R?).
Proof: Let Ac.% (p,q) and let 4 have kernel de.” (R ?).
Then U, A is given by
UA=(1W)R,,4,
where Wis the Fourier transform in L (R ), R, is the opera-
tor given by
R, duv)y=d([up]M),

and k (a) is the matrix

1 1
at at

But 1 W and R, ,, are both isometries of L*(R*) mapping
S(R?) continuously onto itself: Hence U, maps .¥(p,q) con-
tinuously onto /' (R?).

We can now extend U, to a map (also denoted by U ) from
Z'(p,q) onto .7 '(R?) as follows:

(U X=X, U.f)
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for all fe.¥’(R?), where (/]\a is the map from % (R?) onto
Z(p,q) given by
U,=U—a).

The extended U, from #'(p,q) to #'(R?) will be automati-
cally continuous.

Example: We shall compute the Fourier-Weyl trans-
form of § ,€5(p.q).

Let fe.”’(R®), then U, fhas kernel R . (1& W) .
(84U )=R (o (18 WF(0,0)

=(1® W)/ (0,0)

1
g 0,

(277)%Jf( S)ds
1

= 8 s

((27T)£{ ®”'f)

ie.,

U, = ! b1)
e Qm)* .

The canonical Fourier transform F,, 0 <@ < 7/2 from
L¥(p,q) to L¥p',q") is defined in Ref. 9. For an element
AeZ(p,q)

F A=sinatr jexp[—ia(pep +98¢)(48 1)},

where tr, is the partial trace defined as a function from
Lp,q)®.4(p',q") to. .1 (p',q") such that

tr[tr,(4 ® B)}=tr[4 ® B], for 4e.*(p,q) and

Bes(p'.9).
Lemma: F, maps .*'(p,q) continuously onto . '(p',¢").

Proof: If A (p,q) and A4 has kernel d, then F,_A4 has
kernel b given by

coseca —cota
b=R yy(WeW)d, M :(_cota coseca>'

Since R s (o) W ® Wboth map (R ) continuously onto it-
self, the result follows.

We now extend F, to a map from *”(p,q) onto
(p',q"); by defining

(FXA)=(X,F ) forall4e.* (p,q),

it follows that the extended F , is automatically continuous.

Example: We shall compute the canonical Fourier
transform of 5 €.7(p.q). Let A€ (p,q) and let 4 have ker-
nel d.

(F,6,4 )=(5 oF oA ):J‘d (u,v)du dv,

we shall denote F 6

a™ q

by &,
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Theorem: Let Ac.# (p,q), then

F A, =— _ArF 4,
pia)
p:{a) =coseca —cota,
pAa) =coseca +cota,’
F,A74=—" 4 ,F A.
pl@)

Proof: Let 4 have kernel d. Then F ,4 ,4 has kernel b
given by

b(x,p) = Jexp[ — (e, )M (@) (u,0) (v — u)d (u,v)du dv

1 {_3_ - i”e — ()M (@)

Cp lax
xXd (u,v)du dv.
Hence,
F, A, A= 1 APF A,
Pz(a)
343 J. Math. Phys., Vol. 20, No. 2, February 1979

the second result is proved similarly.

Corollary: It follows immediately that for Xe.*'(p,q)
we have:

F,A,X=—>_A?F X,
pAa)
F,47%x=—L4 F x.
pi(@)
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ERRATA

Erratum: “The asymptotic behavior of bound eigenfunctions
of Hamiltonians for single variable systems”
[J. Math. Phys. 19, 1658 (1978)|

John D. Morgan |

Department of Physics, Princeton University, Princeton, New Jersey 08540
(Received 19 September 1978)

(1) Page 1658, 2nd column, line 6 from bottom should
read “(This condition is the “reasonably well-behaved” hy-
pothesis mentioned earlier.) Let F (x) = W (x)XV (x) — E)”,
etc.

(2) Page 1659, below Eq. (12) should read “@ satisfies
(WP'Y =F (n®”.
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